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Abstract. This work presents an approach combining multiple elec-
tronic patient records (EPR) to a self-learning fall risk assessment tool.
We utilized the agent-perspective to model the system, to address privacy
issues and to evaluate different distributed information fusion and opin-
ion aggregation techniques towards there applicability to the addressed
domain. Each agent represents a single patient negotiating about un-
known fall risk influences in order to adapt the fall-risk assessment tool
to the population under care. In addition, we will outline the planned
real-world case study.

1 Introduction

Injuries or disabilities contracted by falls constitute not only as a cause of suffer-
ing for the elderly, but also lead to substantial economic burdens. For example,
the total amount of fall related costs amount to 0.85% - 1.5% of the yearly Ger-
man health care costs [14]. Here, the increasing development of electronic patient
records (EPR) offers new opportunities for the prevention of falls as EPR con-
tain a treasure trove of data [10]. Although, professionals gain benefits from the
consolidation of such data sources, the available feature space is to huge to con-
ceive for humans (e.g. the ICD-10 comprise more then 68,000 codes). In order
to not overwhelm the user, EPRs provide standardized tools — such as fall-risk
assessment tools — utilising a subset of the feature space in order to assist the
user. In this work, we want to introduce such a fall-risk assessment tool which
is agent-based and self-learning in order to reveal some kind of personal health-
care based on huge amount of data. To start with, a literature research done to
identify well-researched fall-indicators and their influences on patients fall-risk
were conducted [21]. Here, we were able to identify 25 fall-risk indicators. How-
ever, during the course of this work we applied the agent perspective to negotiate
about unknown fall-risk influences in order to adjust the fall-risk assessment tool
to the population under care. This requires population-based data, which can
not be provided by studies as those conceived during the literature research as
it would be impractical to conduct as much studies as populations exist [10].
Nevertheless, studies still outline the starting point for personalised health care.
Consequently our approach utilised the identified fall-risk indicators and their



influences as part of the initial knowledge of each agent — where each agents
represents a single patient (See Section 2). Further, we applied the results of the
literature review as part of the evaluation of our approach (See Section 3) and
as default version of the assessment tool used during the planed case study (See
Section 3.1).

The contribution of the work is threefold. To start with, we underline the appli-
cability of contemporary agent-frameworks within EPR, due to their support for
data privacy mechanisms. Germany in particular has strict rules when it comes
to patient data, as such, privacy issues are not considered a nice extra, but re-
quired by law. Further, we show that constituting features of agents (e.g. the
sensor-effector metaphor or cooperation) can be utilized to adjust EPR com-
ponents to the population under care pro-actively. Subsequently, we compare
different pooling methods for distributed information fusion and opinion aggre-
gation in order to identify ways in which such adjustments can be established
and, further, to identify the most-fitting method for the addressed domain.

2 Approach

In order to obtain the goal of personalized health-care there exist the need to
observe population-based data and to utilise the observation results to adapt
the original conceived health-care [10]. One can imagine, that this is a common
procedure in the daily routine of heath-care professionals but a rather hard task
for computers. During the course of this work, we want to outline an agent-based
approach which achieves this for a fall-risk assessment tool as part of a mobile
EPR [1]. Such tools enable health-care professionals to determine the individual
fall-risk of the patients based on several fall-risk indicators and as a consequence
to initiate suitable retaliatory actions. The basic idea of the intended approach
is to enable the patients to negotiate about arising fall-risk indicators which are
not yet available in the assessment tool. Here, each health-care professional takes
care of several patients. We utilised the agent-based approach to model such a
system as illustrated in Fig. 1. Consequently each patient is represented by a
single agent, further, multiple patient agents run on a single platform represent-
ing a health-care professionals tablet. The whole environment consists of several
tablets. However, Fig. 1 also illustrates that the negotiation process consists of
four different stages to determine whether an adaption is necessary or not: The
occurrence of a fall, the local information fusion, the global opinion aggregation
and the notification stage. In the following we will explain each of the stages
in detail. Afterwards we will present a comparison of different distributed in-
formation fusion techniques and outline the most fitting one for the addressed
problem.

2.1 Elaborating Fall-Risk Indicators

Whenever a patient happens to fall, the incident is documented by the health-
care professional. The health-care professional adds the observed fall-event d € D



P(O|d) EPR, EPR,
DS AA A A
update \) - S— | S—
\ - .
patient 4 r'4 /" patient, & — — — > Patient, Patient,
)/ _y P(© | Deprr)
N/ —— ! <+ —— — »|EPR,
e Patients - -
-~ o P(O | DEPRl) - — . —
Patient; Patient, Patient; Patient,

i

Update local
knowledge

b

Fuse global
pinion iff treshold
is reached

T

Inform health-care
professional

Fig. 1. Illustrating the approach where the patient agents at a single EPR negotiate
which feature needs to be evaluated in negotiation with other EPRs and its appro-
priated patient agents. The process starts with the occurrence of a fall-event where
the appropriated patient agents updates the probabilities of all features conceived (1).
Afterwards the agent aggregates its new personal opinion with the prior local opinion
of the node and propose the result to the other patient agents available through the
node (2). If one feature reach a given threshold the agents aggregates the global opinion
requesting all local opinion of the available nodes (3). If the threshold of the feature
is still exceeded the EPR notifies the health-care professional about the new perceived
fall-risk indicator (4).

to the EPR of the associated patient agent. With each observation d, new evi-
dence is collected to elaborate possible fall-risk indicators in the feature space O,
where © are all the quantities of interest on which the group wants to elaborate
an opinion. In our domain the © represents the set of impact factors on a patients
fall-risk, with © = {6;|i = 1..n}. For each patient the patients agent p € P elab-
orates at each observation the evidence for all fall-risk factors. The agent then
updates its believe by using Bayesian information fusion [15] as illustrated by
Eq. 1.

p(d|O@)p(©)
p(d) M

The a-priori p(©) represents the prior knowledge of the quantities of interest. As
mentioned above we received this prior knowledge from a literature overview.
Here we might exclude e.g. surnames of a patient record to be a fall-risk factor
by setting p(Osurname) = 0.0. The likelihood p(d|©) represents the impact of the
observation of d on the belief state of the agent. The a-posteriori p(©|d) can
be calculated with these two inputs [2]. In this work the probability distribution
p(O|d) can be seen as an experts opinion. As the observations d € D are assumed
to be conditional independent, the expert opinion represents the ‘degree of be-
lieve’ of a single patient agent [11]. Each expert p € P has an degree of believe
on which fall-risk factor has influenced the fall observed in the observation d and
formulates this opinion in p(©|d). After each observation the expert updates its

p(Old) = o p(d|©)p(O)



believe over ©. One can easily imagine the vast amount of update functions pos-
sible. For example, Eq. 2 represents one update function which whether doubles
the 6; if the feature changed between this observation and the last one or halved
it otherwise.

20, if dt = dtt!

g, if d £ dt @)

6= {

With such an update function the likelihood of each feature can be calculated
as shown in Eq. 3.

p(d]f) = (3)

The fusion of the new evidence with each preceding observation is then integrated
into the agents believe by using Bayesian information fusion as show in Eq. 4.

p(Bld™) < p(d'|©)p(O]d") (4)

After the agent has a new degree of believe p(O]d' 1) the first stage is completed.
Now the local information fusion updates the group opinion of all patient agents
on the same node. Here, in contrast to the update function of a single agent,
if between agents the same 6 is found, its impact factor should increase to ex-
change the effects of Eq. 2. Since the communication on one tablet is cheap and
secure, the agents on each tablet are enabled to reassess the fall-risks after each
observation of a fall locally. We need to introduce this distinction between intra
and inter Tablet communication because the region the health-care professionals
are working in is not fully covered with wireless Internet connections.

After the probability of a possible fall-risk indicator exceeds the experimentally
established threshold shown in Eq. 5 the global opinion aggregation starts. Here
the patient agents on one tablet fuse their node opinion with the more global
opinion of all devices using the same method as in the local information fusion
phase. If the threshold of the feature is still exceeded the suggested feature is
forwarded to the health-care professional which has to decide whether this fea-
ture is a fall-risk indicator for the population under care or not. The result of
this decision is communicated to all available nodes and if necessary updates
the fall-risk assessment tool with the new feature. Each 6 which was handled
by a health-care professional is removed from the opinion elaboration by setting
p(0x) = 0.0. A side effect of the distributed information fusion is anonymisation.
Since the probability distribution has been created through the aggregation of
multiple opinions the communication between the different tablets during the
global opinion aggregation becomes secure. The messages contain only the prob-
abilities but not the values of the features as the values are not needed anymore
at this stage.

1
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Now each patient agent represents some kind of fall-risk expert which is able to
express its opinion about the fall-risk influences of its patient. Following Roback
and Givens the arising issue ‘is to pool opinions in a rational way that yields a
single probability distribution from which inference can be made’ [19]. Here, we
might use methods of information fusion to establish a group opinion [22].

2.2 Aggregating the Group Opinion

As usual in the information fusion we need some kind of aggregation method to
fuse these local expert opinions together to a generalized view [23]. Since there
are multiple options, we have to choose an appropriate method (a so called
pooling method) to combine multiple opinions into a group opinion. Pooling
methods might represent different voting strategies like an dictatorship of one
opinion, a democracy where every agents opinion has the same weight or an
strategy which is based on the reliability of the experts. The interested reader
is referred to Faehndrich [4].

However, to see how those pooling methods work, we will look at some of them,
and evaluate their usefulness in our multi-agent system. Some of the best known
pooling methods are the ‘Linear Opinion Pool’ [7] (LinOp), the ‘Logarithmic
Opinion Pool’ [9] (LogOp) and the ‘Supra-Bayesian Pooling Method’ [8]. Each
of them profits from a growing body of evidence [3]. There are two ways on
evaluating a pooling method: On the one hand, we can evaluate their theoretical
properties like a 'non dictatorship’ or an ’unanimity’ [18]. On the other hand
one can measure their performance in a real world example. In this work, we
want to evaluate how those theoretically well-researched pooling methods can
be used in the real world task of elaborating fall-risks as a group decision in a
multi-agent system.

Table 1. Classification of the examined pooling methods and there applicability to
the domain we address. With n being the amount of patient agents and m being the
number of nodes (devices) available.

Method Space Time Communication
Supra-Bayesian O(1) 0(1) O(m+n)
Linear Opinion O(m * n?) O(m * n?) O(m+n)
Pool

Logarithmic Opin- O(m * n?) O(m * n?) O(m+n)

ion Pool

Table 1 classifies the examined pooling methods utilizing several criteria. Here we
point out the time, space and communication complexity of the pooling methods.
Although, the opinion aggregation using LinOP and LogOP requires the mean
value and therefore requires to aggregate the opinion of every agent and node



depending on the voting round, the communication complexity of all pooling
method is equal. This is due the fact, that using the Supra-Bayesian the agents
have to broadcast the new aggregated opinion to all other agents and nodes as
illustrated in Fig. 1. However, the time and space complexity differs. Since we
have two voting rounds, one local on the node and another one between nodes,
the space and time complexity rises quadratically using LinOP or LogOP. Here,
the Supra-Bayesian Pooling Method can reuse the last available pooling result
generated in the prior voting round to update the node and/or group opinion.
This reduces the time and space complexity to be linear.

3 Evaluation

In order to evaluate the described approach we developed a prototype using
the agent framework JIAC V [12]. Here, we decided to conduct a simulation in
order to test the algorithm. Each patient agent where set-up with the initial
set of well-researched fall-risk indicators which we received from our literature
research [21]. All utilized features such as age, sex or diseases are available in
contemporary EPR and can be ordered through their impact on the fall-risk
of a patient. For example, a physical deficit in the lower extremities influences
a patients fall-risk more than the age of the patient (factor 4.4 vs. 1.7) [20].
We implemented the patient agents as described in Section 2 and migrated the
data model of the EPR developed within the agnes?"®' project [1]. Further, we
implemented an agent (SimAgent) which simulates the health-care professionals
role. The SimAgent adds a fall-event each 100ms to the multi-agent system and
decides whether a suggested feature is a fall-risk indicator for the population
under care or not. As fall-events do not occur randomly the SimAgent decides
which patient should fall based on the patients current fall-risk. Further, the
SimAgent changes the features of the patient record as it would be during the
use of the EPR system. The simulation of the aging process of a patient is based
on the research results of prior studies with risk-equivalent patients [5, 6, 13]. We
utilized this behavior to evaluate the system. In the following we will discuss the
simulations result of each of the three implemented pooling methods. For each
pooling method we observed 50 features during the first 80 voting rounds and
carried out several simulation runs.

Despite that the simulation always starts with the same initial set of patients,
the aging process is non-deterministic and varies between the simulation runs.
Therefore the subsequently presented figures can not be compared directly.
Fig. 2 illustrates the probability distribution for the LinOP method. To aggregate
the opinions of the patient agents LinOP requires weights for each expert. During
the simulation we set the weights to m which can be interpreted as a fair
democracy. Here we observed that the probability of the observed features grows
slowly during the first 80 voting rounds. LinOP did not exceed a maximum of
0.14 for a single feature making it necessary to observe a greater number of falls.
In our real-world problem we do not expect this high rate of falls.
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Fig. 2. Progress of the probability distribution using the LinOP method. The x-axis
shows the feature, the y-axis the probability and the z-axis the voting round.

Fig. 3 illustrates the probability distribution for the LogOP method. For the
simulation with LogOP we applied the same weights as used in the LinOP sim-
ulation. During the first voting rounds LogOP produces similar results as the
LinOP does. The group decision behavior changes at the moment the first fea-
tures reach a zero probability. Since with a growing body of evidence single
features get excluded. One must notice, that in the case of LogOP a single ex-
pert vote with p(f) = 0.0 suffices to exclude a single feature disregarding all
other expert opinions. This is based on the multiplicative nature of the pooling
method making single feature disproportional likely.

Fig. 4 illustrates the probability distribution for the Supra-Bayes Pooling method.
Using Supra-Bayes it is difficult to decide which likelihood function to use after
an observation d. For the simulation we applied the arbitrary function shown
in Eq. 2. Supra-Bayes requires no weights presenting a rational way of pooling
a democratic group opinion. In contrast to LogOP no single expert can use its
vote to disregard all other votes. In addition, Supra-Bayes profits much faster
from a growing body of evidence. The first feature exceeds the threshold after
only a few voting rounds. This can be seen as advantage and disadvantage. For
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Fig. 3. Progress of the probability distribution using the LogOP method. The x-axis
shows the feature, the y-axis the probability and the z-axis the voting round.

our real-world problem we profit from the fast convergence since less falls have
to be observed.

3.1 Field Test

The simulation results presented above showed that our approach seems valid
and is applicable to the problem it addresses. In addition, we are currently
facing the launching date of the real-world field test. The first phase of the
field test includes six home-visiting nurses engaged in the wide-spreaded area
of Brandenburg, Germany. This nurses will treat between 180 to 300 patients
which are at least 65 years old and multi-morbid (more then three diseases).
The first phase is scheduled for three month and we expect a noticeable number
of fall events as prior studies with risk-equivalent patient groups show that the
addressed patients have a rather high fall-risk (up to 60% per year [5]). As
this rate only addresses the self-reported fall events of the patients it will be
interesting to see how many falls actually occur.
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Fig. 4. Progress of the probability distribution using the Supra-Bayesian method. The
x-axis shows the feature, the y-axis the probability and the z-axis the voting round.

3.2 Selecting a Pooling Method

To conclude, for our approach we finally decided to use the Supra-Bayesian
method through the following reasons.

During our simulation run we analysis the first 80 voting rounds where each
voting round was triggered by a single fall observation. During the field test
we expect less falls. As mentioned above the health-care professional will treat
between 180 to 300 patients. Therefore, we can calculate that we will observe
approximately 30 to 50 falls. Only the Supra-Bayesian Pooling method is able
to produce meaningful results under this circumstance. Hence, one reason is
the expected fall-rate. Another reason is the space and time complexity as the
addressed platform are tablets and the system should act resource-efficient. Even
the communication complexity remains equal for all considered pooling methods,
the Supra Bayesian method outperforms the others in time and space complexity
here (as shown in Tab. 1). In addition, we can underline the finding of Roback
and Givens [19] that the implementation of LinOP and LogOP in real problems
was not simple as weights for the group members or the likelihood function



have to be chosen. As this might be an interesting opportunity for future work
(weighting of experience), this effort is not necessary for the current field test.

4 Conclusion

In this paper, we introduced an agent-based approach for a self-learning fall-risk
assessment tool. This tool as part of a mobile EPR enables health-care pro-
fessionals to determine the individual fall-risk of the patients based on several
fall-risk indicators. Usually this fall-risk indicators are based on studies which
are not able to capture population based data. In order to adapt the assessment
tool to the population under care, we enabled the patients to be part of the elab-
oration of arising fall-risk indicators. Here each patient is represented by a single
agent where each mobile EPR contains multiple agents. The whole environment
consists of multiple EPRs. In order to aggregate all opinions we introduced an
approach consisting of four steps: The occurrence of a fall, the local information
fusion, the global opinion aggregation and the notification stage. During the lo-
cal information fusion and the global opinion aggregation each patient votes as
a fall-risk expert. Here, we applied three different information fusion methods
to pool a rational single opinion, where a single opinion represents a probability
distribution over all features in the feature space. The evaluation of the fusion
techniques emphasises that one method outperforms the others under the spe-
cial circumstance of our application. Here, we showed that the fall frequency we
expect is not large enough for the other methods to produce meaningful results.
Also we require a method which is resource-efficient in time and space complexity
as the addressed platform are tablets.

4.1 Future Work

The presented approach utilises a great amount of information available through
the EPR. However, at this point of development the information fusion is limited
to data sources which can be easily computed by the agents. Even the software
engineers and designers try to standardize and automate most of the binary
input in EPRs, there will be always the need to provide free text fields for the
health-care professionals as the addressed working environment is to manifold
to normalize it. Hence, in the next stage we want to make accessible the full
potential of EPRs using Natural Language Processing techniques to evaluate the
free text fields. Furthermore, we plan to integrate external influences into the risk
decision process. Which means that we want to examine if weather conditions
or the actual season of the year also influence the fall risk of elderly. Another
interesting research focus in information fusion for EPRs is the integration of
sensor data into health records (e.g. Mohomed et al. [16] and Moulton et al. [17]).
Although the aggregation of sensor data is not in the focus of this work it provides
interesting aspects for the future with upcoming Bluetooth 4.0 health devices.
Extending the research on pooling methods, different pooling methods have to
be evaluated as well as their parameters. Analyzing different update function
and impact on the learning algorithms will be further focused.
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