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ABSTRACT 
The development 1  of self-adaptive systems can greatly benefit 
from reference frameworks to structure the development process. 
Current reference frameworks abstract from the adaptation 
decision – the selection of a specific adaptation based on the goals 
and options available. This decision is usually based on the three 
adaptation policies: rule-based, goal-based or utility based. 
However, concepts from these policies often are combined with 
each other in different ways to achieve hybrid policies. To 
structure this combination this paper identifies four types of such 
combinations. We express these types as patterns within a model 
that captures the functions, models and relations participating in 
the adaptation decision.  

CCS CONCEPTS 
• Software and its engineering � Software organization and 
properties � Software system structures � Abstraction, 
modeling and modularity 

KEYWORDS 
Adaptation Decision, Adaptation Policies, Reference Model 

1 INTRODUCTION 
Researchers have aimed to provide structured frameworks and 

guidelines for the implementation of self-adaptive systems. 
Examples are the MAPE-K loop [5, 11], which has been 
implemented and extended in several ways, and FORMS [24], 
which provides a formal underpinning for modelling the 
computations and information participating in a self-adaptive 
system (SAS). These frameworks enable structured engineering of 
self-adaptive systems, comparison of approaches and reuse of 
concepts and implementations. 
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One of the key aspects of a self-adaptive system is the 
adaptation decision: finding an appropriate adaptation given the 
current situation and goals. While existing frameworks usually 
define a component or function to encompass this decision, the 
implementation of the decision making is not detailed and left to 
the developer. However, since the adaptation decision is one of 
the central aspects of a self-adaptive system, developers could 
significantly benefit from structures and guidelines.  

To represent different approaches to implement adaptation 
decisions, Kephard and Walsh use adaptation policies from 
artificial intelligence [12]. They classify policies as rule-based 
(deriving adaptations from condition-action rules), goal-based 
(searching for adaptations to fulfil a goal) and utility-based 
(searching adaptations that maximize a utility function). These 
policies are often combined with each other [8]. We call those 
combinations hybrid adaptation policies.  

In this paper we present our classification of four types of 
combination of adaptation policies that lead to hybrid policies. To 
characterize these types we introduce a model to represent 
computations, information and relations involved in the adaptation 
decision and identify patterns in this model that correspond to the 
types of hybrid policies. This represents a first step towards a 
structured framework for modelling, classifying and comparing 
approaches for making adaptation decisions. 

In the following section, we review state of the art in self-
adaptive systems concerning adaptation decisions. Section 3 
describes two running examples that will be used for illustration. 
The foundation of the paper is given in Section 4. It consists of 
category theory, as the foundation of our modelling notation, and 
a description of the three adaptation policies. Section 5 classifies 
hybrid policies and describes them as model patterns.  These are 
applied to the running examples in Section 6. Section 7 discusses 
limitations and extensions planned in future work. 

2 STATE OF THE ART 
This section considers existing reference frameworks to derive 

information relevant to classifying adaptation decisions. 
Several frameworks discuss the relation between multiple 

MAPE-K loops. They deal with when and how multiple loops 
interact [22, 23]. Those approaches do not detail the plan phase of 
the original MAPE-K loop. However, they give an idea on how 
multiple decisions, distributed over multiple loops, can interact. 
The DYNAMICO framework splits the adaptation up into three 

76

2018 ACM/IEEE 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems



SEAMS '18, May 28–29, 2018, Gothenburg, Sweden F. Trollmann et al. 
 
feedback loops [18]. The classic adaptation feedback loop is 
accompanied by a feedback loop concerning the monitoring 
infrastructure and a feedback loop concerning goals. While these 
feedback loops still abstract from how the plan phase is 
implemented, the goal feedback loop involves maintaining, 
reasoning about and changing an explicit notion of goal. Such a 
goal representation is also necessary for reasoning about goal 
fulfilment in the adaptation decision. 

Vogel et al. extend the MAPE-K loop from a model driven 
engineering perspective in their EUREMA framework [20, 21]. 
Here, the knowledge base is divided into models. EUREMA 
distinguishes between reflective models, which represent the 
running system, an evaluation model, which represents the 
adaptation goals, and a change model, which represents the 
adaptation options available to the plan phase. While the approach 
does not detail the plan phase, it structures its input by providing 
explicit models for goals (evaluation model) and adaptation 
options (change model). 

FORMS is a formal framework for architecture choices in self-
adaptive systems [24]. In this framework a self-adaptive system is 
composed of subsystems, distinguished into base-level 
subsystems (the adaptive system itself) and reflective subsystems 
(that monitor, represent or change other software systems). The 
framework enables expressing models and computations used by 
those subsystems. The adaptation decision is a computation in 
reflective subsystems. FORMS is aligned with the MAPE-K loop 
and distinguishes reflective computations for its four phases. It 
does not detail how these computations are implemented.  

Hussein et al. classify adaptation mechanisms with adaptation 
policies [9]. The three adaptation policies have been inspired from 
artificial intelligence where they have been defined as action 
selection policies for artificial agents [15]. They have been 
applied to the self-adaptive systems domain earlier by Kephart 
and Welsh [12] and Balasubramanian et al. [1]. During their 
classification, Hussein et al. notice that in some cases multiple 
adaptation policies are mixed and predict this as a future trend for 
self-adaptive systems.  

To verify this trend we performed a structured literature 
analysis. The purpose of this analysis was to get a representative 
sample of existing approaches and determine whether they require 
hybrid adaptation policies. To retrieve a representative sample set 
we focused on the SEAMS conference in the years 2016 [26] and 
2017 [27]2. For classification we used the distinction between 
evaluation and change model made in EUREMA [21]. The 
evaluation model describes which information is used to represent 
the goals of the adaptation and the change model describes which 
options are available for adaptation. For each model we identified 
elements from the three adaptation policies (cf. Section 4.2). The 
result is shown in Fig. 1. Each dot represents a set of approaches 
with the same properties. The number in the dot represents the 
number of approaches. The location of the dot represents the 
combination of evaluation and change model. Dots on the line 
between two categories represent that elements from both 
                                                                 
2 Detailed results are provided on: https://figshare.com/s/2bfb135bcb1920c15b4b. 

categories are present. For example, the lighter dot represents that 
there are two approaches with a goal-based change model and 
elements from goal- and utility-based evaluation models.  

These findings confirm that adaptation policies are frequently 
mixed. Of the 26 approaches only seven use pure adaptation 
policies. The other approaches either combine evaluation and 
change model of different policies or use elements from multiple 
policies in their evaluation/change model (dots on the lines 
between two categories).  

The literature review also revealed multiple ways in which 
these policies are combined. Thus, even approaches that are 
represented by the same dot In Fig. 1 may differ in how they 
combine the elements from the respective policy. This paper 
classifies these types of combination in four general types of 
hybrid policies, based on the experiences of the structured 
literature review. In the next section we will use two running 
examples from the literature review to illustrate two different 
types of combination.  

 

Figure 1: Classification of adaptation policies published in the 
last years 2016 and 2017 at the SEAMS conference. 

3 RUNNING EXAMPLES 
In this section we present two examples of self-adaptive systems. 
These examples illustrate that there are different kinds of 
combination of adaptation policies and serve as running example 
for the classification and model presented in Section 5. 

The first example is DeltaIOT, an exemplar for adaptation in 
the Internet of Things that aims to enable researchers to evaluate 
and compare their approaches [10]. DeltaIOT consists of a 
multihop network with 25 communication nodes and various 
sensors based on LORA communication. The goal of adaptation is 
to maintain connectivity of each node to a central gateway. This 
goal is accompanied by the following side-constraints: 

• Reduce Package Loss by guaranteeing a bounded number of 
packets lost in the whole network 

• Minimise energy consumption over the whole network 
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• Minimise packet loss over the whole network 
• Balance energy consumption by minimising imbalance 
Adaptation is required due to uncertainty. Examples are 

interference in the wireless network or unavailability of nodes. To 
react to these situations, an adaptation approach can change the 
network settings for the connection between neighbouring nodes. 
These settings consist of three numeric parameters: transmission 
power, spreading factor and distribution factor.  

Iftikhar et al provide an example adaptation mechanism for 
wireless interference and fluctuating traffic load [10]. The 
example approach uses a MAPE-K loop to monitor network 
parameters and, in case they are not optimal, plan a reaction. This 
is done by modifying the transmission power and the distribution 
factor gradually over multiple iterations of the MAPE-K loop 
until the network parameters are optimal. 

The second example is the learning and evolution approach in 
dynamic software product lines (DSPL) by Sharifloo et al. [16]. 
We call this example L-DSPL. DSPL use rule-based 
adaptation [7]. A feature-model describes features of the software 
system and contains variability, e.g., by having alternate 
components for the same role. Adaptation rules select the 
configuration of features based on context situations. Learning 
and evolution is motivated by the uncertainty present when 
defining the adaptation rules.  

Learning updates the adaptation rules to deal with unexpected 
context changes or situations in which the system exhibits non-
optimal behaviour. For this purpose, the authors add an explicit 
notion of requirement that can be evaluated at run time. A 
situation that does not meet the requirements triggers the learning 
process. Possible actions for learning are to change, remove and 
add adaptation rules. Learning cannot change the feature-model.  

The evolution process is responsible for evolving the feature 
model. In this process unused features may be removed or new 
features may be added to address a situation that cannot otherwise 
be addressed. Adding new features requires extending the 
software system. Thus, the evolution process is executed by the 
developer (e.g., during maintenance). Since the evolution process 
is not coordinated by an automated software system at runtime we 
focus on the DSPL and learning processes in this paper and 
exclude the evolution process.  

Both examples represent hybrids of two adaptation policies. 
DeltaIOT contains goals from goal- and utility-based adaptation 
policies. Node connectivity, a Boolean goal, is accompanied by 
utility functions, like energy consumption. L-DSPL implements a 
rule-based adaptation policy, combined with a goal function and 
actions, which are elements of goal-based policies. 

The two approaches are also fundamentally different in how 
they combine adaptation policies. DeltaIOT has a single 
adaptation mechanism that can take into account both Boolean 
goal descriptions as well as optimization functions. L-DSPL, on 
the other hand, has two separate adaptation mechanisms: the 
DSPL approach, which is responsible for adapting the software 
application, and the learning component, which is responsible for 
adapting the rules in the DSPL approach.  

4 FOUNDATIONS 
This section describes the foundations for understanding the 

categorization of hybrid policies. As formal foundation we chose 
category theory. Category theory and its interpretation as 
representation of adaptive systems are introduced in Section 4.1. 
Section 4.2 describes the three adaptation policies. 

4.1 Category Theory 
Category theory is a formal framework that focuses on the 

interrelation of objects [6]. In this paper we use category theory to 
formalize an adaptive system by assuming that the adaptive 
system is represented by a category with certain properties. This 
notion also lets us abstract from any specific adaptive system as 
we will only need to assume that a category with the respective 
properties exists and do not have to know the specific category. 

A category consists of four elements �������� 	� 
��. ��  is 
the set objects contained in the category and ���  is a set of 
morphisms between those objects. Morphisms can be imagined as 
directed arrows, each connecting two objects. These arrows 
usually represent specific relations between objects that can differ 
from category to category. For example, in a category of sets of 
Latin letters the objects can represent sets such as 
��, 
�� �� or 

�� �� ��. Morphisms represent the subset relation, meaning the 

set contains arrows such as 
��
�
� 
�� �� . A category further 

requires two properties. It requires that morphisms can be 
composed sequentially by an operator 	  and that identical 
morphisms 
�  exist for each object. In our example both 
properties are fulfilled because the subset relation is transitive 

(e.g., 
��
�
� 
�� ��  and 
�� ��

�
� 
�� �� ��  imply 
��

�
� 
�� �� �� ) 

and reflexive (e.g., 
��
�
� 
�� exists).  

Categories have been used before to represent models of 
adaptive or dynamic systems (e.g., in [17]). Objects represent 
models of the language (e.g., all class diagrams) and morphisms 
represent relations between them. This enables talking about 
models and their relation without referring to a specific modelling 
language. This has for example been used in graph transformation 
to prove results that hold for all modelling languages with certain 
properties [4].  

We use categories to represent adaptive systems. This is 
inspired by Zhang et al., who view an adaptive program as a set of 
steady state programs, which are “non-adaptive program(s) suited 
for a specific set of environmental conditions” [25]. Adaptation is 
a transition between steady state programs. In our category 
representation the objects correspond to steady state programs and 
morphisms represent adaptations between them. 

An adaptation is not the only possible change. Adaptations are 
usually a reaction to the dynamic behaviour of the software 
system and its environment. These dynamic behaviour changes 
can encompass state changes of the adaptive system itself, e.g., its 
execution state, or changes in monitored context variables. To be 
able to capture all of these changes we extend our notion of a 
category representing an adaptive system. We define objects to 
contain information about the adaptive system as well as its 
environment. Morphisms can represent any change, including 
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changes caused by dynamic behaviour and changes caused by 
adaptation. In some places we will need to distinguish between 
both types of changes. For doing so we require that the dynamic 
behaviour and adaptation behaviour each form a subcategory of 
the adaptive system representation which only represents the 
respective changes. This is expressed in the following definition: 

Definition 1 (Adaptive System Representation). An 
adaptive system is represented by a category � �
���������� 	�� 
���  whose objects ���  represent all 
possible states of the adaptive system and its’ environment 
and whose morphisms represent changes to the self-
adaptive system or its environment. 
The adaptation behaviour of an adaptive system �  is 
represented by a category ��� � ����� ����

�� �

������ 	�� 
�� ) whose morphisms ������  represent all 
adaptations. 
The dynamic behaviour of an adaptive system �  is 
represented by a category ����� � ����� ����

��� �

������ 	�� 
�� ) whose morphisms �������  represent all 
monitored changes to the self-adaptive system or its 
environment. 

Using this definition we can talk about changes of a SAS in 
general, by referring to ����, or refer to adaptations or dynamic 
behaviour exclusively by referring to ������  or ������� 
respectively. The reader should be aware that due to the properties 
of a category all three types of changes contain identities and 
sequential composition of changes. Thus, they are able to express 
non-changes, by using identities, and a sequence of changes is 
also a valid change, due to sequential composition. 

To align this view on adaptive systems with more traditional 
views on self-adaptive systems we integrate it into the MAPE-K 
loop. For this, we use the extension of the MAPE-K loop 
proposed by Vogel et al. [20]. The integration is shown in Fig. 2. 
As stated in Section 2, this framework provides three types of 
models: the evaluation model, representing the goals of an 
adaptation, the change model, representing how the system can be 
changed, and the system representation, representing the state of 
the self-adaptive system and its environment.  

We assume that the system representation is an adaptive 
system representation (cf. Definition 1). The system 
representation is a direct representation of the adaptive system 
managed by the MAPE-K loop. Vogel et al. further classify the 
system representation (called reflection models) into system 
models, representing the running system, environment models, 
representing the environment and analysis models, representing 
information derived via analysis. Our system representation is on 
the level of general reflective models as our adaptive system 
representation encompasses the system and its environment. Since 
it assumes an arbitrary category it may contain specialized 
submodels, if required by a specific approach. 

 

Figure 2: Relation of the formalization to the MAPE-K loop 
extension developed by Vogel et al. [20]. 

In the MAPE-K loop Monitor and Analyze update the system 
representation. The produced update is a morphism from the 
dynamic behaviour of the self-adaptive system. Plan implements 
an adaptation policy that derives an adaptation. It uses the 
dynamic behaviour change, evaluation model and change model 
as input. The produced adaptation is a morphism from the 
adaptation behaviour of the adaptive system. Execute is 
responsible for implementing this change.  

This paper focuses on how adaptation policies derive the 
adaptation in the plan phase. The search space of an adaptation 
policy is usually restricted by the goal it aims to fulfil and the 
adaptations it can apply in a given situation. We formulate this 
information as adaptation problem. Based on the terminology 
from Fig. 2, we define the adaptation problem as follows: 

Definition 2 (Adaptation Problem). Given two 
categories representing the change model (  ��  and 
evaluation model (EM), an adaptation problem is a four-
tuple �cm, em, conforms to, fulfils) where  !"� # ��$% is a 
change model, �"� # ��&%  is an evaluation model, 
!�'(��")�*�� � ���$% �+ ����

��� +�����
��  is a relation 

specifying the conformity of an adaptation with the change 
model and (,-(
-)� � ���&% +�����

��  is a relation 
specifying when an adaptation fulfils the evaluation model. 

The adaptation problem contains the evaluation and change 
model and relations that specify how they are applied. The 
evaluation model em defines the goal of the adaptation. The 
relation (,-(
-)� describes how this goal is evaluated. For 
example, if the evaluation model is a double-valued function the 
relation fulfils describes whether an adaptation is required to 
minimize or maximize this function. The change model cm 
describes which adaptations are considered valid. The relation 
conforms to is used to evaluate whether an adaptation adheres to 
this model. For example, the change model could consist of a set 
of actions that can be applied and the conforms to relationship 
could test whether an adaptation can be achieved by applying 
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these actions to the current state of the adaptive system. Thus, 
overall the adaptation problem specifies which options are 
available for adaptation (cm, conforms to) and how the success of 
an adaptation is evaluated (em, fulfils). 

In Section 5 we will use the adaptive system, adaptation 
problem and plan phase as means to classify and model hybrid 
adaptation approaches. 

4.2 Adaptation Policies 
In this section we introduce the three adaptation policies. To 

capture their differences we discuss differences in their adaptation 
problem (Definition 2) and plan phase. The reader should be 
aware that the policies described here are stereotypical, i.e., actual 
approaches may choose to implement details differently or add 
additional elements depending on the requirements of a specific 
approach. Fig. 3 depicts an overview of the relevant information.  

 

Figure 3: Pure Adaptation Policies. 

In the rule-based policy the change model consists of a set of 
adaptation rules. Each rule consists of a condition, which specifies 
whether the rule should be applied based on the dynamic 
behaviour change, and an action, which applies the rule. This 
policy does not contain an explicit evaluation model. This reflects 
the fact that the goal has been used to define the rules and thus is 
implicit in their conditions and actions and not formalized 
separately. Since there is no evaluation model the relation fulfils 
has no information to restrict possible adaptations and is defined 
as true (always fulfilled). The plan phase consists of two 
functions. selection selects a set of rules to apply based on their 
condition. The function application applies the rules and resolves 
conflicts (e.g., there are several notions of conflict and 
dependency in graph transformation [2]).  

The dynamic software product line in L-DSPL is an example 
of a rule-based policy. If we exclude the learning component the 
DSPL approach consists of a set of rules, which select the right 
feature model. These rules have mutually exclusive conditions 
based on the current context situation. This means, the result of 

selection is exactly one rule. The action substitutes the current 
feature model with the one prescribed by the rule. Thus, 
application applies the selected rule, if it is not applied already. 

The rule-based policy can be implemented and extended in 
different ways. E.g., in L-DSPL only one rule can be applied at a 
time, whereas other approaches could allow the application of 
multiple rules. The two functions in the plan phase can also be 
implemented in different ways, e.g., prioritizing certain rules or 
using conflict notions on different levels of granularity [3]). 
Actions can also be extended with more information, e.g., by 
requiring the action to be reversible. 

As suggested by the name, the goal-based policy is governed 
by a goal function in its evaluation model. This function is a 
Boolean function that determines if the adaptation fulfils the goal. 
The change model consists of a set of actions that can be used to 
reach the goal.  Each action is a function that can be applied to 
derive an adaptation. The plan phase consists of a function 
planning, which selects a sequence of actions and a function 
execution, which executes them to derive an adaptation. 

The learning part of L-DSPL is an example for a goal-based 
policy. This part optimizes the rules of the DSPL approach by 
using actions that add rules, remove rules and change rules. The 
actions are carried out to ensure the DSPL approach fulfils all 
requirements (= Boolean goal function). An example for such a 
requirement is for the rules to be unique and complete, meaning in 
every possible context situation exactly one rule is applied.  

Again, there are multiple ways to implement this policy. E.g., 
the goal may refer to the result of the adaptation or to the 
adaptation itself. Actions may also be extended, e.g., by 
applicability conditions. 

In the utility-based policy, the evaluation model contains one 
or more utility functions that map an adaptation to a double value. 
The change model identifies a set of variation points and intervals 
for their possible values. The plan phase can search within those 
intervals for an optimal combination. It consists of a function 
optimization, which determines the optimal values for the 
variation points and a function execution which implements these 
values and derives the according adaptation. 

DeltaIOT is a combination of goal- and utility-based policies. 
If we ignore the Boolean goals (connectivity, sums of connections 
is 100, reduce package loss), the remaining parts represent a 
utility-based policy. The utility function is composed of three 
subfuctions minimise energy consumption, minimise package loss 
and balance energy consumption. The network parameters of each 
node represent the variation points. Here, each contained 
parameter has to be within a specific interval (transmission power: 

./�0 12� , spreading factor: 
3�0 14� , distribution factor: 

5�0 155�). 

Different ways to implement the utility-based policy concern 
different types of variation points (e.g, choosing integer 
parameters, configuring an architecture model, ...) and different 
types of utility function. In general, the utility function may refer 
to the result of the adaptation (e.g., the energy consumption of a 
configuration in DeltaIOT) or to the adaptation itself (e.g., the 
cost or benefit of the change). Depending on the function, 
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minimization or maximization may be required by fulfils. If the 
evaluation model contains multiple utility functions the relation 
fulfils also has to specify how they relate (tradeoffs, requirement 
of pareto-optimality,…)  

Our utility-based policy differs from the traditional utility-
based policy [15], which is an extension of the goal-based policy 
with a utility function. The description above does not contain 
actions, but a set of variation points. The purpose is to have three 
prototypical policies which are as different from each other as 
possible. This is inspired by the difference between the planning 
and optimization problem in artificial intelligence. From this point 
of view, planning with a utility function represents a hybrid of the 
goal- and utility-based policy. 

To further illustrate the difference between these two policies 
we use a short example. Our goal based policy searches a way 
through a two-dimensional grid while avoiding obstacles. It can 
move up, down, left or right (actions). Our utility-based policy 
searches the maximum of a function with two integer parameters. 
While both policies search a combination of two integer 
parameters, the goal-based policy traverses the state space one 
square at a time while the utility-based policy can try 
combinations of parameters in any order to find an optimum.  

Summarizing, each of the three pure adaptation policies has its 
stereotypical version of the evaluation and change model. While 
in praxis their implementation can vary according to the specifics 
of a solution algorithm, these models are usually very similar, or 
are extensions of the ones we present here. 

5 CLASSIFICATION 
In this Section we present our classification of ways to create 

hybrid policies from the adaptation policies from Section 4.2.  The 
classification is based on our experiences with the structured 
literature review, described in Section 2. For the classification we 
observe how the combined policies relate in their adaptive 
systems, adaptation problem and plan phase.  

Since adaptation policies can only be combined if they concern 
the same or related adaptive systems we use the adaptive system 
as primary classification criteria. Two policies can be related in 
their adaptive system in the following ways. Their adaptive 
systems can be the same or different. If they differ they may still 
be related in the sense that they are part of a common parent 
system, e.g., they are adapting specific concerns of a larger 
adaptive system. Two policies can also be related if the adaptive 
system of one is information used by the other policy, e.g., in L-
DSPL, where the rules in the change model of the DSPL approach 
are adapted by the learning mechanism. If neither of these cases 
apply we say the adaptive systems are unrelated. 

If two policies target the same adaptive system we classify 
them with respect to relations of their adaptation problem. They 
may be integrated, meaning that components from both 
adaptation problems are combined into one adaptation problem 
that is solved within a single MAPE-K loop, or separate, meaning 
there are multiple adaptation problems and MAPE-K loops.  

If the adaptive system is the same and the adaptation problem 
is integrated the combined policies adapt the same system with the 

same purpose in one MAPE-K loop. In this situation we can 
distinguish two cases based on whether the overall plan phase 
keeps the plan phases of the compined policies separate, e.g., by 
calling them from the outer plan phase and merging/selecting their 
results. If the plan phases from the combined policies cannot be 
distinguished we say they are integrated.  

Based on these three criteria, Fig. 4 illustrates the classification 
of types of combination of adaptation policies. In this 
classification we identify four types of combination: integrated, 
coordinated, concurrent and hierarchical. 

 

Figure 4: Classification of ways to create hybrid policies. 

In the next subsection we will introduce the concrete syntax of 
a modeling notation to help us to represent these four types of 
hybrid policies in terms of the involved computation, relations and 
models. We will use this notation to model and explain the four 
types of combination in the following subsections. 

5.1 Model Notation 
To illustrate the different types of combinations of adaptation 

policies we use a modelling notation. We need to represent 
functions, how they are related in terms of information and how 
they relate to relations like conforms to and fulfils. 

 

Figure 5: Visual notation of adaptation policies. 

This notation builds on the foundations from Section 4. 
Specifically, we assume that for each model there is an adaptive 
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system representation (Definition 1) that denotes the modelling 
language of this model. Models are either objects or Morphisms 
from this category. This enables us to represent information that 
may change due to dynamic run time behaviour or adaptation. 
Specifically, we will make use of this for defining the hierarchical 
adaptation policy. If a model is not adaptive or cannot change, the 
respective set of morphisms in the modelling language can be 
defined as empty. 

Fig. 5 shows the overview of the notation. It contains a legend 
(right hand part) and an example of a plan phase using this 
notation (left hand part). The notation consists of models, 
functions and relations. Models contain information and represent 
the connection to our category-theoretic foundation.  

Functions are related to models by two arrows indicating that 
they use a model (input) or produce a model (output). Functions 
are related to relations by dashed arrows, indicating that they 
guarantee that their input and output fulfil the relation. For 
example, (,'!*
�'��6���$% �+ ����

��� � �����
��  fulfils the 

relation !�'(��")�*�� � ���$% �+ ����
��� +�����

�� , meaning 
for (,'!*
�'���!"� ���� �� �7�  we have !�'(��")�*���!"�
���� 7�� . In cases where the correlation based on types is 
ambiguous we use annotations on arrows. E.g., the annotations on 
function B denote that it is the output adaptation that is related to 
the evaluation model by relation fulfils, not the input adaptation. 

Both functions and models can nest elements. Functions can be 
implemented via a workflow of subfunctions and models can 
contain more fine-granular information. 

The left part of Fig. 5 shows how we represent the plan phase 
of the MAPE-K loop. The plan phase is defined to have the input 
and output specified in Fig. 2. It uses the adaptation problem (cf. 
Definition 2) thus has access to the evaluation model and change 
model and fulfils relations conforms to and fulfils. It is connected 
to the system representation, which uses an adaptive system 
representation (cf. Definition 1) as modelling language. From this 
representation the plan phase observes a dynamic behaviour 
change and produces an adaptation change. It fulfils the relations 
conforms to and fulfils. In the figure, the content of the plan phase 
is exemplified via two inner functions, function A and function B, 
producing an intermediate adaptation.  

The reader should note that this notation is not intended as 
complete modelling notation, despite its formal grounding. E.g., it 
lacks clear execution semantics, like the relation between nested 
elements. For the purpose of this paper this is sufficient since we 
use it to illustrate the difference between hybrid policy types. To 
be usable as framework the respective execution semantics need 
to be provided, e.g., by a mapping into EUREMA [21] or process-
based notations such as BPMN [13]. In this paper, we take certain 
liberties with the notation. For reasons of readability we will use 
textual descriptions in quotation marks to abbreviate relations 
whose formal definition is too unwieldy.  

5.2 Integrated Combination 
An integrated hybrid adaptation policy combines multiple 

policies targeting the same adaptive system and adaptation 
problem with an integrated plan phase.  

An example is the classical interpretation of the utility-based 
policy, depicted in Fig. 6. In this policy the goal-based policy is 
combined with a utility function. This utility function is added to 
the evaluation model. Accordingly, the combined evaluation 
model consists of a tuple of evaluation models, one from each 
policy. The relation fulfils is also extended to check whether the 
adaptation fulfils the goal and optimizes the utility function. 
Formally, this means, the relation is an intersection of the 
relations fulfils of both policies. In the plan phase function 
�8*
"
9�:;
*�:7!*
�') (which is able to plan action application 
with a utility function) is used to derive the required adaptation. 

 

Figure 6: Illustration of an integrated hybrid policy. 

In our modelling notation an integrated combination can be 
recognized by the fact that the adaptation problem, plan phase and 
adaptive system are fully merged. This means, there is a single 
integrated plan phase targeting one adaptive system and an 
integrated adaptation problem.  The integration of adaptation 
problems can be based on the evaluation model, change model or 
both as well as the respective relations. The plan phase in this 
policy is integrated, meaning it is not a composition of the 
separate plan phases of the respective policies but is implemented 
in terms of its own functions. In the example, neither the pure 
goal-based nor the utility-based policy contains a function 
�8*
"
9�:;
*�:7!*
�') that is able to optimize a utility function 
via application of actions. 

5.3 Coordinated Combination 
A coordinated hybrid adaptation policy combines multiple 

adaptation approaches in one MAPE-K loop but keeps their plan 
phases separate. This can be modelled as an outer plan phase in 
which the plan phases of the combined policies are called.  

Fig. 7 gives an example in which two plan phases, <-7'� and 
<-7'�, are nested within one outer plan phase. Each inner plan 
phase is called with the original adaptation problem and the 
dynamic behaviour change. Each plan phase produces a separate 
result (=�)� and =�)�). A function select selects the result that 
best fulfils the utility function.  

Like the integrated combination, the coordinated combination 
contains one adaptive system and adaptation problem. The plan 
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phase, however, can be subdivided into the original plan phases 
from the combined policies. As illustrated by select, the outer plan 
phase may contain additional functions, e.g., to split up the 
adaptation problem into subproblems or to combine the result. 
The example in Fig. 7 represents an ensemble in which multiple 
policies are executed and the best one is selected. Other 
combinations could aim to find the intersection of two sub-
problems or to find an adaptation that contains both results. 

 

Figure 7: Illustration of a coordinated hybrid policy. 

5.4 Concurrent Combination 
In a concurrent hybrid policy the combined policies solve 

different adaptation problems, in different MAPE-K loops, but 
target the same adaptive system directly or indirectly.  

This is illustrated in Fig. 8. In the direct case (a), two plan 
phases target the same adaptive system. This means, they operate 
on the same category, representing the adaptive system. However, 
the distinction between dynamic behaviour and adaptation may be 
different. E.g., the adaptation caused by one plan phase may be 
considered dynamic behaviour by the other plan phase.  

In the indirect case (b) the adaptive system of both plan phases 
is part of a common overall adaptive system. This means, there is 
an adaptive system that encompasses both adaptive systems �� 
and �� . Even though both adaptations target different adaptive 
system they may still influence each other.  

In our model the concurrent case is signified by separate plan 
phases that adapt the same adaptive system, either by having this 
system as target of the two plan phases directly or by indirectly 
targeting two (possibly overlapping) subsystems. 

 

Figure 8: Illustration of a concurrent hybrid policy. 

5.5 Hierarchical Combination 
In a hierarchical combination of adaptation policies the 

adaptive system of one policy is part of the information used in 
the other policy. This means, the purpose of the second policy is 
not to adapt the same adaptive system but to change the way in 
which the first policy adapts the adaptive system.  

This is illustrated in Fig. 9. Plan phase <-7'�  targets an 
adaptive system � that contains the adaptation problem of <-7'�. 
The purpose of this combination is to assure or optimize 
properties of the adaptation mechanism itself, like its calculation 
time or result quality. For this purpose the category ��used by 
<-7'� will often use additional information about the behaviour 
of <-7'� that can be monitored and used as basis for decisions.  

 

Figure 9: Illustration of a hierarchical hybrid policy. 

83



Hybrid Adaptation Policies SEAMS '18, May 28–29, 2018, Gothenburg, Sweden 
 

 

In our model the hierarchical combination is represented by 
two separate plan phases, one of which targets information used in 
the other one. This information may not always be the adaptation 
problem. It may be only part of the adaptation problem (e.g., only 
the evaluation or change model) or other information used in 
<-7'�> For example, if <-7'� contains an optimization approach, 
such as simulated annealing, the second policy could tweak 
parameters such as acceptance probability. 

5.6 Discussion 
In this section we present a classification of four types of 

combination for adaptation policies and a model that can be used 
to represent how these combinations are implemented. If two 
policies are combined with a single plan phase (i.e., in a single 
MAPE-K loop) they can be integrated or coordinated, based on 
whether the plan phases from both policies can still be 
distinguished. In the case of multiple plan phases they can be 
concurrent, if their adaptive systems coincide or are parts of the 
same overall system, or hierarchical, if the adaptive system of one 
is part of the plan phase or adaptation problem of the other. If 
neither case applies we say the policies are unrelated.  

Since the concurrent and hierarchical case concern multiple 
MAPE-K loops similar concepts can be found in frameworks that 
model the interaction of MAPE-K loops. In EUREMA [21] the 
concurrent combination is called independent or coordinated 
execution of feedback loops while the hierarchical combination is 
called layered execution of feedback loops.  

The classification presented in this section is limited to the 
combination of two policies. However, the complexity of realistic 
approaches often requires the combination of more than two 
policies or a combination in more than one type. Since the 
combined policies do not need to be pure policies the four types of 
combination can be applied multiple times, thus nesting these 
combinations. For example, two policies could be integrated with 
each other and the resulting policy could be optimized via a third 
policy in hierarchical combination.  

The classification could also be extended to more detailed 
subcategories. For integrated and coordinated combination, 
subcategories could be based on different combinations of 
adaptation problems or different implementations of the plan 
phase. The type of combined policy could also be taken into 
consideration. This could reveal whether there are special types of 
combination based on which policies are combined or which 
information is contained in the combined policies.  

6 APPLICATION 
In this section, we apply our model to DeltaIOT and L-DSPL 

to illustrate how these approaches are modelled and explain the 
differences we observed in Section 3. These frameworks are 
examples of integrated and hierarchical combination. After 
discussing them we give examples of the other two combinations. 

DeltaIOT is a mix of a utility-based and goal-based policy. 
The main adaptation mechanism is goal-based, but uses utility 
functions as side goals. Since the adaptation problem is solved in 

one plan phase this is an example of an integrated adaptation 
policy. The model of DeltaIOT is given in Fig. 10. 

 

Figure 10: Model of DeltaIOT 

The adaptive system representation of DeltaIOT consists of 
network parameters for each connection and information about the 
network state.  

The change model prescribes intervals for transmission power, 
spreading factor and distribution factor. A network configuration 
conforms to this change model if the factors of each connection 
are within those intervals and if the sum of distribution factors for 
all connections from one node is 100 (Iftikhar et al. state that the 
sum is usually 100 [10]). The evaluation model contains Boolean 
goals (maintain connectivity and reduce package loss) and utility 
functions (minimise energy consumption, minimise package loss 
and balance energy consumption). The Boolean goals are required 
by relation fulfils. In addition, this relation requires the utility 
functions to be improved if possible. This is a reflection of the 
fact that the approach optimizes these functions gradually.  

The adaptation mechanism in DeltaIOT changes the network 
parameters gradually. It does so by improving the utility functions 
step-wise until no more improvement can be made.  

L-DSPL is a combination of a rule-based adaptation policy 
(DSPL) and goal-based adaptation policy (learning). Both have 
separate planning phases and learning optimizes the rules, which 
are part of the DSPL approach. This is a hierarchical combination 
of those policies. The model of L-DSPL is given in Fig. 11. 

The lower part of the figure represents the DSPL approach. 
The category representing the adaptive system contains an 
instance of the feature model, which represents the current state of 
the software system, and a context model, which represents the 
state of the monitored context information. The adaptation 
problem contains a set of adaptation rules (change model). In the 
DSPL exactly one rule is applied at the same time (conforms to). 
As usual in rule-based approaches there is no explicit notion of 
goal as the goal is encoded in the rules. Thus, the evaluation 
model is empty and always fulfilled. The plan phase selects a rule 
and then switches the running system to adhere to this rule.  
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Figure 11: Model of L-DSPL 

The upper part of the figure represents the learning component. 
The adaptive system of this plan phase contains the change model 
of the DSPL part. It also contains information about the 
adaptation history, i.e., in which context states the rules have 
worked and failed. The adaptation problem is goal-based. The 
change model contains actions to change, add or remove rules 
from the DSPL change model. A feature model conforms to this 
change model if all rules adhere to the feature model and have 
mutually exclusive conditions. The evaluation model contains a 
Boolean requirement, that needs to be preserved (fulfils). 

Using these models we are able to identify the difference in 
combining policies described in the end of Section 3. While both 
examples combine two adaptation policies, they do so using 
different types of combination. DeltaIOT uses an integrated 
combination in which the adaptation problem uses information 
from both policies. L-DSPL uses a hierarchical combination in 
which one policy adapts the other one.  

Examples for the other two types of combination can also be 
found. The hybrid planning approach by Pandey et al. is an 
example for a coordinated combination [14]. This approach 
solves an integrated planning problem (goal-based problem with 
utility function) by using multiple planning algorithms and 
selecting among the results based on time- and quality constraints. 

An example for a concurrent approach is the self-adaptation 
approach by Vogel and Giese [19] in which a model of an 

adaptive system is synchronized with multiple views on that 
model which reflect only the information relevant to a specific 
aspect (e.g., component failure or performance). Each partial 
model has its own adaptation mechanism. 

7  DISCUSSION AND FUTURE WORK 
In this paper we classify four ways to combine adaptation 

policies into hybrid policies: integrated, concurrent, coordinated 
and hierarchical. The classification is done based on which 
adaptive system they target, whether they solve the same 
adaptation problem and whether their plan phases are integrated. 
To represent these combinations we use a reference model, 
representing the implementation of an adaptation policy in terms 
of functions, models and relations. The reference model uses 
category theory as formal foundation to represent the state space 
of an adaptive system. 

The classification and the reference model can be used to 
structure the development of self-adaptive systems and compare 
different approaches based on how their adaptation mechanism is 
implemented. While the classification is still fairly course, the 
accompanying model enables to represent the implementation and 
combination of approaches in more detail and can be used for 
more fine-grained discussion and comparison of approaches. 

The model and classification are the result of our state of the 
art analysis on SEAMS 2016 and 2017. While we believe the 
resulting sample set of approaches to be representative, it may be 
the case that the classification needs extension in future work to 
capture cases that haven’t been encountered yet.  

To evaluate completeness and extend our classification and 
model we aim to extend the structured literature analysis and 
model each identified approach with our model. As a result of this 
activity we can further refine classification and model by 
considering repeated patterns in the resulting models.  

The model provided in this paper is an early version of a 
modelling language that aims to model plan phases to classify and 
compare them. Since we expect further extensions due to the 
above mentioned refinement activities, we left the model on an 
abstract level, avoiding a completely specified abstract syntax. In 
future work we intend to complete and provide this model to the 
community. The implementation will likely be a mapping to or 
extension of existing modelling languages. Candidates that have 
been considered and excluded for this paper where FORMS [24], 
which provides more of an architectural view than the input-
output-based process view in our model, and EUREMA [21], 
which is not able to represent relations. It is likely that the final 
implementation will constitute an extension of or mapping to such 
a modelling language. 
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