
Hybrid Adaptation Policies – Towards a Framework for
Classification and Modelling of Different Combinations of

Adaptation Policies
Frank Trollmann

DAI-Labor, TU Berlin
10587 Berlin

Germany
frank.trollmann@dai-labor.de

Johannes Fähndrich
DAI-Labor, TU Berlin

10587 Berlin
Germany

johannes.fähndrich@dai-labor.de

Sahin Albayrak
DAI-Labor, TU Berlin

10587 Berlin
Germany

sahin.albayrak @dai-labor.de

ABSTRACT
The development 1 of self-adaptive systems can greatly benefit
from reference frameworks to structure the development process.
Current reference frameworks abstract from the adaptation
decision – the selection of a specific adaptation based on the goals
and options available. This decision is usually based on the three
adaptation policies: rule-based, goal-based or utility based.
However, concepts from these policies often are combined with
each other in different ways to achieve hybrid policies. To
structure this combination this paper identifies four types of such
combinations. We express these types as patterns within a model
that captures the functions, models and relations participating in
the adaptation decision.

CCS CONCEPTS
• Software and its engineering � Software organization and
properties � Software system structures � Abstraction,
modeling and modularity

KEYWORDS
Adaptation Decision, Adaptation Policies, Reference Model

1 INTRODUCTION
Researchers have aimed to provide structured frameworks and

guidelines for the implementation of self-adaptive systems.
Examples are the MAPE-K loop [5, 11], which has been
implemented and extended in several ways, and FORMS [24],
which provides a formal underpinning for modelling the
computations and information participating in a self-adaptive
system (SAS). These frameworks enable structured engineering of
self-adaptive systems, comparison of approaches and reuse of
concepts and implementations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SEAMS '18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5715-9/18/05…$15.00
https://doi.org/10.1145/3194133.3194137

One of the key aspects of a self-adaptive system is the
adaptation decision: finding an appropriate adaptation given the
current situation and goals. While existing frameworks usually
define a component or function to encompass this decision, the
implementation of the decision making is not detailed and left to
the developer. However, since the adaptation decision is one of
the central aspects of a self-adaptive system, developers could
significantly benefit from structures and guidelines.

To represent different approaches to implement adaptation
decisions, Kephard and Walsh use adaptation policies from
artificial intelligence [12]. They classify policies as rule-based
(deriving adaptations from condition-action rules), goal-based
(searching for adaptations to fulfil a goal) and utility-based
(searching adaptations that maximize a utility function). These
policies are often combined with each other [8]. We call those
combinations hybrid adaptation policies.

In this paper we present our classification of four types of
combination of adaptation policies that lead to hybrid policies. To
characterize these types we introduce a model to represent
computations, information and relations involved in the adaptation
decision and identify patterns in this model that correspond to the
types of hybrid policies. This represents a first step towards a
structured framework for modelling, classifying and comparing
approaches for making adaptation decisions.

In the following section, we review state of the art in self-
adaptive systems concerning adaptation decisions. Section 3
describes two running examples that will be used for illustration.
The foundation of the paper is given in Section 4. It consists of
category theory, as the foundation of our modelling notation, and
a description of the three adaptation policies. Section 5 classifies
hybrid policies and describes them as model patterns. These are
applied to the running examples in Section 6. Section 7 discusses
limitations and extensions planned in future work.

2 STATE OF THE ART
This section considers existing reference frameworks to derive

information relevant to classifying adaptation decisions.
Several frameworks discuss the relation between multiple

MAPE-K loops. They deal with when and how multiple loops
interact [22, 23]. Those approaches do not detail the plan phase of
the original MAPE-K loop. However, they give an idea on how
multiple decisions, distributed over multiple loops, can interact.
The DYNAMICO framework splits the adaptation up into three

76

2018 ACM/IEEE 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

SEAMS '18, May 28–29, 2018, Gothenburg, Sweden F. Trollmann et al.

feedback loops [18]. The classic adaptation feedback loop is
accompanied by a feedback loop concerning the monitoring
infrastructure and a feedback loop concerning goals. While these
feedback loops still abstract from how the plan phase is
implemented, the goal feedback loop involves maintaining,
reasoning about and changing an explicit notion of goal. Such a
goal representation is also necessary for reasoning about goal
fulfilment in the adaptation decision.

Vogel et al. extend the MAPE-K loop from a model driven
engineering perspective in their EUREMA framework [20, 21].
Here, the knowledge base is divided into models. EUREMA
distinguishes between reflective models, which represent the
running system, an evaluation model, which represents the
adaptation goals, and a change model, which represents the
adaptation options available to the plan phase. While the approach
does not detail the plan phase, it structures its input by providing
explicit models for goals (evaluation model) and adaptation
options (change model).

FORMS is a formal framework for architecture choices in self-
adaptive systems [24]. In this framework a self-adaptive system is
composed of subsystems, distinguished into base-level
subsystems (the adaptive system itself) and reflective subsystems
(that monitor, represent or change other software systems). The
framework enables expressing models and computations used by
those subsystems. The adaptation decision is a computation in
reflective subsystems. FORMS is aligned with the MAPE-K loop
and distinguishes reflective computations for its four phases. It
does not detail how these computations are implemented.

Hussein et al. classify adaptation mechanisms with adaptation
policies [9]. The three adaptation policies have been inspired from
artificial intelligence where they have been defined as action
selection policies for artificial agents [15]. They have been
applied to the self-adaptive systems domain earlier by Kephart
and Welsh [12] and Balasubramanian et al. [1]. During their
classification, Hussein et al. notice that in some cases multiple
adaptation policies are mixed and predict this as a future trend for
self-adaptive systems.

To verify this trend we performed a structured literature
analysis. The purpose of this analysis was to get a representative
sample of existing approaches and determine whether they require
hybrid adaptation policies. To retrieve a representative sample set
we focused on the SEAMS conference in the years 2016 [26] and
2017 [27]2. For classification we used the distinction between
evaluation and change model made in EUREMA [21]. The
evaluation model describes which information is used to represent
the goals of the adaptation and the change model describes which
options are available for adaptation. For each model we identified
elements from the three adaptation policies (cf. Section 4.2). The
result is shown in Fig. 1. Each dot represents a set of approaches
with the same properties. The number in the dot represents the
number of approaches. The location of the dot represents the
combination of evaluation and change model. Dots on the line
between two categories represent that elements from both

2 Detailed results are provided on: https://figshare.com/s/2bfb135bcb1920c15b4b.

categories are present. For example, the lighter dot represents that
there are two approaches with a goal-based change model and
elements from goal- and utility-based evaluation models.

These findings confirm that adaptation policies are frequently
mixed. Of the 26 approaches only seven use pure adaptation
policies. The other approaches either combine evaluation and
change model of different policies or use elements from multiple
policies in their evaluation/change model (dots on the lines
between two categories).

The literature review also revealed multiple ways in which
these policies are combined. Thus, even approaches that are
represented by the same dot In Fig. 1 may differ in how they
combine the elements from the respective policy. This paper
classifies these types of combination in four general types of
hybrid policies, based on the experiences of the structured
literature review. In the next section we will use two running
examples from the literature review to illustrate two different
types of combination.

Figure 1: Classification of adaptation policies published in the
last years 2016 and 2017 at the SEAMS conference.

3 RUNNING EXAMPLES
In this section we present two examples of self-adaptive systems.
These examples illustrate that there are different kinds of
combination of adaptation policies and serve as running example
for the classification and model presented in Section 5.

The first example is DeltaIOT, an exemplar for adaptation in
the Internet of Things that aims to enable researchers to evaluate
and compare their approaches [10]. DeltaIOT consists of a
multihop network with 25 communication nodes and various
sensors based on LORA communication. The goal of adaptation is
to maintain connectivity of each node to a central gateway. This
goal is accompanied by the following side-constraints:

• Reduce Package Loss by guaranteeing a bounded number of
packets lost in the whole network

• Minimise energy consumption over the whole network

77

Hybrid Adaptation Policies SEAMS '18, May 28–29, 2018, Gothenburg, Sweden

• Minimise packet loss over the whole network
• Balance energy consumption by minimising imbalance
Adaptation is required due to uncertainty. Examples are

interference in the wireless network or unavailability of nodes. To
react to these situations, an adaptation approach can change the
network settings for the connection between neighbouring nodes.
These settings consist of three numeric parameters: transmission
power, spreading factor and distribution factor.

Iftikhar et al provide an example adaptation mechanism for
wireless interference and fluctuating traffic load [10]. The
example approach uses a MAPE-K loop to monitor network
parameters and, in case they are not optimal, plan a reaction. This
is done by modifying the transmission power and the distribution
factor gradually over multiple iterations of the MAPE-K loop
until the network parameters are optimal.

The second example is the learning and evolution approach in
dynamic software product lines (DSPL) by Sharifloo et al. [16].
We call this example L-DSPL. DSPL use rule-based
adaptation [7]. A feature-model describes features of the software
system and contains variability, e.g., by having alternate
components for the same role. Adaptation rules select the
configuration of features based on context situations. Learning
and evolution is motivated by the uncertainty present when
defining the adaptation rules.

Learning updates the adaptation rules to deal with unexpected
context changes or situations in which the system exhibits non-
optimal behaviour. For this purpose, the authors add an explicit
notion of requirement that can be evaluated at run time. A
situation that does not meet the requirements triggers the learning
process. Possible actions for learning are to change, remove and
add adaptation rules. Learning cannot change the feature-model.

The evolution process is responsible for evolving the feature
model. In this process unused features may be removed or new
features may be added to address a situation that cannot otherwise
be addressed. Adding new features requires extending the
software system. Thus, the evolution process is executed by the
developer (e.g., during maintenance). Since the evolution process
is not coordinated by an automated software system at runtime we
focus on the DSPL and learning processes in this paper and
exclude the evolution process.

Both examples represent hybrids of two adaptation policies.
DeltaIOT contains goals from goal- and utility-based adaptation
policies. Node connectivity, a Boolean goal, is accompanied by
utility functions, like energy consumption. L-DSPL implements a
rule-based adaptation policy, combined with a goal function and
actions, which are elements of goal-based policies.

The two approaches are also fundamentally different in how
they combine adaptation policies. DeltaIOT has a single
adaptation mechanism that can take into account both Boolean
goal descriptions as well as optimization functions. L-DSPL, on
the other hand, has two separate adaptation mechanisms: the
DSPL approach, which is responsible for adapting the software
application, and the learning component, which is responsible for
adapting the rules in the DSPL approach.

4 FOUNDATIONS
This section describes the foundations for understanding the

categorization of hybrid policies. As formal foundation we chose
category theory. Category theory and its interpretation as
representation of adaptive systems are introduced in Section 4.1.
Section 4.2 describes the three adaptation policies.

4.1 Category Theory
Category theory is a formal framework that focuses on the

interrelation of objects [6]. In this paper we use category theory to
formalize an adaptive system by assuming that the adaptive
system is represented by a category with certain properties. This
notion also lets us abstract from any specific adaptive system as
we will only need to assume that a category with the respective
properties exists and do not have to know the specific category.

A category consists of four elements �������� 	�
��. �� is
the set objects contained in the category and ��� is a set of
morphisms between those objects. Morphisms can be imagined as
directed arrows, each connecting two objects. These arrows
usually represent specific relations between objects that can differ
from category to category. For example, in a category of sets of
Latin letters the objects can represent sets such as
��,
�� �� or

�� �� ��. Morphisms represent the subset relation, meaning the

set contains arrows such as
��
�
�
�� �� . A category further

requires two properties. It requires that morphisms can be
composed sequentially by an operator 	 and that identical
morphisms
� exist for each object. In our example both
properties are fulfilled because the subset relation is transitive

(e.g.,
��
�
�
�� �� and
�� ��

�
�
�� �� �� imply
��

�
�
�� �� ��)

and reflexive (e.g.,
��
�
�
�� exists).

Categories have been used before to represent models of
adaptive or dynamic systems (e.g., in [17]). Objects represent
models of the language (e.g., all class diagrams) and morphisms
represent relations between them. This enables talking about
models and their relation without referring to a specific modelling
language. This has for example been used in graph transformation
to prove results that hold for all modelling languages with certain
properties [4].

We use categories to represent adaptive systems. This is
inspired by Zhang et al., who view an adaptive program as a set of
steady state programs, which are “non-adaptive program(s) suited
for a specific set of environmental conditions” [25]. Adaptation is
a transition between steady state programs. In our category
representation the objects correspond to steady state programs and
morphisms represent adaptations between them.

An adaptation is not the only possible change. Adaptations are
usually a reaction to the dynamic behaviour of the software
system and its environment. These dynamic behaviour changes
can encompass state changes of the adaptive system itself, e.g., its
execution state, or changes in monitored context variables. To be
able to capture all of these changes we extend our notion of a
category representing an adaptive system. We define objects to
contain information about the adaptive system as well as its
environment. Morphisms can represent any change, including

78

SEAMS '18, May 28–29, 2018, Gothenburg, Sweden F. Trollmann et al.

changes caused by dynamic behaviour and changes caused by
adaptation. In some places we will need to distinguish between
both types of changes. For doing so we require that the dynamic
behaviour and adaptation behaviour each form a subcategory of
the adaptive system representation which only represents the
respective changes. This is expressed in the following definition:

Definition 1 (Adaptive System Representation). An
adaptive system is represented by a category � �
���������� 	��
��� whose objects ��� represent all
possible states of the adaptive system and its’ environment
and whose morphisms represent changes to the self-
adaptive system or its environment.
The adaptation behaviour of an adaptive system � is
represented by a category ��� � ����� ����

�� �

������ 	��
��) whose morphisms ������ represent all
adaptations.
The dynamic behaviour of an adaptive system � is
represented by a category ����� � ����� ����

��� �

������ 	��
��) whose morphisms ������� represent all
monitored changes to the self-adaptive system or its
environment.

Using this definition we can talk about changes of a SAS in
general, by referring to ����, or refer to adaptations or dynamic
behaviour exclusively by referring to ������ or �������
respectively. The reader should be aware that due to the properties
of a category all three types of changes contain identities and
sequential composition of changes. Thus, they are able to express
non-changes, by using identities, and a sequence of changes is
also a valid change, due to sequential composition.

To align this view on adaptive systems with more traditional
views on self-adaptive systems we integrate it into the MAPE-K
loop. For this, we use the extension of the MAPE-K loop
proposed by Vogel et al. [20]. The integration is shown in Fig. 2.
As stated in Section 2, this framework provides three types of
models: the evaluation model, representing the goals of an
adaptation, the change model, representing how the system can be
changed, and the system representation, representing the state of
the self-adaptive system and its environment.

We assume that the system representation is an adaptive
system representation (cf. Definition 1). The system
representation is a direct representation of the adaptive system
managed by the MAPE-K loop. Vogel et al. further classify the
system representation (called reflection models) into system
models, representing the running system, environment models,
representing the environment and analysis models, representing
information derived via analysis. Our system representation is on
the level of general reflective models as our adaptive system
representation encompasses the system and its environment. Since
it assumes an arbitrary category it may contain specialized
submodels, if required by a specific approach.

Figure 2: Relation of the formalization to the MAPE-K loop
extension developed by Vogel et al. [20].

In the MAPE-K loop Monitor and Analyze update the system
representation. The produced update is a morphism from the
dynamic behaviour of the self-adaptive system. Plan implements
an adaptation policy that derives an adaptation. It uses the
dynamic behaviour change, evaluation model and change model
as input. The produced adaptation is a morphism from the
adaptation behaviour of the adaptive system. Execute is
responsible for implementing this change.

This paper focuses on how adaptation policies derive the
adaptation in the plan phase. The search space of an adaptation
policy is usually restricted by the goal it aims to fulfil and the
adaptations it can apply in a given situation. We formulate this
information as adaptation problem. Based on the terminology
from Fig. 2, we define the adaptation problem as follows:

Definition 2 (Adaptation Problem). Given two
categories representing the change model (�� and
evaluation model (EM), an adaptation problem is a four-
tuple �cm, em, conforms to, fulfils) where !"� # ��$% is a
change model, �"� # ��&% is an evaluation model,
!�'(��")�*�� � ���$% �+ ����

��� +�����
�� is a relation

specifying the conformity of an adaptation with the change
model and (,-(
-)� � ���&% +�����

�� is a relation
specifying when an adaptation fulfils the evaluation model.

The adaptation problem contains the evaluation and change
model and relations that specify how they are applied. The
evaluation model em defines the goal of the adaptation. The
relation (,-(
-)� describes how this goal is evaluated. For
example, if the evaluation model is a double-valued function the
relation fulfils describes whether an adaptation is required to
minimize or maximize this function. The change model cm
describes which adaptations are considered valid. The relation
conforms to is used to evaluate whether an adaptation adheres to
this model. For example, the change model could consist of a set
of actions that can be applied and the conforms to relationship
could test whether an adaptation can be achieved by applying

79

Hybrid Adaptation Policies SEAMS '18, May 28–29, 2018, Gothenburg, Sweden

these actions to the current state of the adaptive system. Thus,
overall the adaptation problem specifies which options are
available for adaptation (cm, conforms to) and how the success of
an adaptation is evaluated (em, fulfils).

In Section 5 we will use the adaptive system, adaptation
problem and plan phase as means to classify and model hybrid
adaptation approaches.

4.2 Adaptation Policies
In this section we introduce the three adaptation policies. To

capture their differences we discuss differences in their adaptation
problem (Definition 2) and plan phase. The reader should be
aware that the policies described here are stereotypical, i.e., actual
approaches may choose to implement details differently or add
additional elements depending on the requirements of a specific
approach. Fig. 3 depicts an overview of the relevant information.

Figure 3: Pure Adaptation Policies.

In the rule-based policy the change model consists of a set of
adaptation rules. Each rule consists of a condition, which specifies
whether the rule should be applied based on the dynamic
behaviour change, and an action, which applies the rule. This
policy does not contain an explicit evaluation model. This reflects
the fact that the goal has been used to define the rules and thus is
implicit in their conditions and actions and not formalized
separately. Since there is no evaluation model the relation fulfils
has no information to restrict possible adaptations and is defined
as true (always fulfilled). The plan phase consists of two
functions. selection selects a set of rules to apply based on their
condition. The function application applies the rules and resolves
conflicts (e.g., there are several notions of conflict and
dependency in graph transformation [2]).

The dynamic software product line in L-DSPL is an example
of a rule-based policy. If we exclude the learning component the
DSPL approach consists of a set of rules, which select the right
feature model. These rules have mutually exclusive conditions
based on the current context situation. This means, the result of

selection is exactly one rule. The action substitutes the current
feature model with the one prescribed by the rule. Thus,
application applies the selected rule, if it is not applied already.

The rule-based policy can be implemented and extended in
different ways. E.g., in L-DSPL only one rule can be applied at a
time, whereas other approaches could allow the application of
multiple rules. The two functions in the plan phase can also be
implemented in different ways, e.g., prioritizing certain rules or
using conflict notions on different levels of granularity [3]).
Actions can also be extended with more information, e.g., by
requiring the action to be reversible.

As suggested by the name, the goal-based policy is governed
by a goal function in its evaluation model. This function is a
Boolean function that determines if the adaptation fulfils the goal.
The change model consists of a set of actions that can be used to
reach the goal. Each action is a function that can be applied to
derive an adaptation. The plan phase consists of a function
planning, which selects a sequence of actions and a function
execution, which executes them to derive an adaptation.

The learning part of L-DSPL is an example for a goal-based
policy. This part optimizes the rules of the DSPL approach by
using actions that add rules, remove rules and change rules. The
actions are carried out to ensure the DSPL approach fulfils all
requirements (= Boolean goal function). An example for such a
requirement is for the rules to be unique and complete, meaning in
every possible context situation exactly one rule is applied.

Again, there are multiple ways to implement this policy. E.g.,
the goal may refer to the result of the adaptation or to the
adaptation itself. Actions may also be extended, e.g., by
applicability conditions.

In the utility-based policy, the evaluation model contains one
or more utility functions that map an adaptation to a double value.
The change model identifies a set of variation points and intervals
for their possible values. The plan phase can search within those
intervals for an optimal combination. It consists of a function
optimization, which determines the optimal values for the
variation points and a function execution which implements these
values and derives the according adaptation.

DeltaIOT is a combination of goal- and utility-based policies.
If we ignore the Boolean goals (connectivity, sums of connections
is 100, reduce package loss), the remaining parts represent a
utility-based policy. The utility function is composed of three
subfuctions minimise energy consumption, minimise package loss
and balance energy consumption. The network parameters of each
node represent the variation points. Here, each contained
parameter has to be within a specific interval (transmission power:

./�0 12� , spreading factor:
3�0 14� , distribution factor:

5�0 155�).

Different ways to implement the utility-based policy concern
different types of variation points (e.g, choosing integer
parameters, configuring an architecture model, ...) and different
types of utility function. In general, the utility function may refer
to the result of the adaptation (e.g., the energy consumption of a
configuration in DeltaIOT) or to the adaptation itself (e.g., the
cost or benefit of the change). Depending on the function,

80

SEAMS '18, May 28–29, 2018, Gothenburg, Sweden F. Trollmann et al.

minimization or maximization may be required by fulfils. If the
evaluation model contains multiple utility functions the relation
fulfils also has to specify how they relate (tradeoffs, requirement
of pareto-optimality,…)

Our utility-based policy differs from the traditional utility-
based policy [15], which is an extension of the goal-based policy
with a utility function. The description above does not contain
actions, but a set of variation points. The purpose is to have three
prototypical policies which are as different from each other as
possible. This is inspired by the difference between the planning
and optimization problem in artificial intelligence. From this point
of view, planning with a utility function represents a hybrid of the
goal- and utility-based policy.

To further illustrate the difference between these two policies
we use a short example. Our goal based policy searches a way
through a two-dimensional grid while avoiding obstacles. It can
move up, down, left or right (actions). Our utility-based policy
searches the maximum of a function with two integer parameters.
While both policies search a combination of two integer
parameters, the goal-based policy traverses the state space one
square at a time while the utility-based policy can try
combinations of parameters in any order to find an optimum.

Summarizing, each of the three pure adaptation policies has its
stereotypical version of the evaluation and change model. While
in praxis their implementation can vary according to the specifics
of a solution algorithm, these models are usually very similar, or
are extensions of the ones we present here.

5 CLASSIFICATION
In this Section we present our classification of ways to create

hybrid policies from the adaptation policies from Section 4.2. The
classification is based on our experiences with the structured
literature review, described in Section 2. For the classification we
observe how the combined policies relate in their adaptive
systems, adaptation problem and plan phase.

Since adaptation policies can only be combined if they concern
the same or related adaptive systems we use the adaptive system
as primary classification criteria. Two policies can be related in
their adaptive system in the following ways. Their adaptive
systems can be the same or different. If they differ they may still
be related in the sense that they are part of a common parent
system, e.g., they are adapting specific concerns of a larger
adaptive system. Two policies can also be related if the adaptive
system of one is information used by the other policy, e.g., in L-
DSPL, where the rules in the change model of the DSPL approach
are adapted by the learning mechanism. If neither of these cases
apply we say the adaptive systems are unrelated.

If two policies target the same adaptive system we classify
them with respect to relations of their adaptation problem. They
may be integrated, meaning that components from both
adaptation problems are combined into one adaptation problem
that is solved within a single MAPE-K loop, or separate, meaning
there are multiple adaptation problems and MAPE-K loops.

If the adaptive system is the same and the adaptation problem
is integrated the combined policies adapt the same system with the

same purpose in one MAPE-K loop. In this situation we can
distinguish two cases based on whether the overall plan phase
keeps the plan phases of the compined policies separate, e.g., by
calling them from the outer plan phase and merging/selecting their
results. If the plan phases from the combined policies cannot be
distinguished we say they are integrated.

Based on these three criteria, Fig. 4 illustrates the classification
of types of combination of adaptation policies. In this
classification we identify four types of combination: integrated,
coordinated, concurrent and hierarchical.

Figure 4: Classification of ways to create hybrid policies.

In the next subsection we will introduce the concrete syntax of
a modeling notation to help us to represent these four types of
hybrid policies in terms of the involved computation, relations and
models. We will use this notation to model and explain the four
types of combination in the following subsections.

5.1 Model Notation
To illustrate the different types of combinations of adaptation

policies we use a modelling notation. We need to represent
functions, how they are related in terms of information and how
they relate to relations like conforms to and fulfils.

Figure 5: Visual notation of adaptation policies.

This notation builds on the foundations from Section 4.
Specifically, we assume that for each model there is an adaptive

81

Hybrid Adaptation Policies SEAMS '18, May 28–29, 2018, Gothenburg, Sweden

system representation (Definition 1) that denotes the modelling
language of this model. Models are either objects or Morphisms
from this category. This enables us to represent information that
may change due to dynamic run time behaviour or adaptation.
Specifically, we will make use of this for defining the hierarchical
adaptation policy. If a model is not adaptive or cannot change, the
respective set of morphisms in the modelling language can be
defined as empty.

Fig. 5 shows the overview of the notation. It contains a legend
(right hand part) and an example of a plan phase using this
notation (left hand part). The notation consists of models,
functions and relations. Models contain information and represent
the connection to our category-theoretic foundation.

Functions are related to models by two arrows indicating that
they use a model (input) or produce a model (output). Functions
are related to relations by dashed arrows, indicating that they
guarantee that their input and output fulfil the relation. For
example, (,'!*
�'��6���$% �+ ����

��� � �����
�� fulfils the

relation !�'(��")�*�� � ���$% �+ ����
��� +�����

�� , meaning
for (,'!*
�'���!"� ���� �� �7� we have !�'(��")�*���!"�
���� 7�� . In cases where the correlation based on types is
ambiguous we use annotations on arrows. E.g., the annotations on
function B denote that it is the output adaptation that is related to
the evaluation model by relation fulfils, not the input adaptation.

Both functions and models can nest elements. Functions can be
implemented via a workflow of subfunctions and models can
contain more fine-granular information.

The left part of Fig. 5 shows how we represent the plan phase
of the MAPE-K loop. The plan phase is defined to have the input
and output specified in Fig. 2. It uses the adaptation problem (cf.
Definition 2) thus has access to the evaluation model and change
model and fulfils relations conforms to and fulfils. It is connected
to the system representation, which uses an adaptive system
representation (cf. Definition 1) as modelling language. From this
representation the plan phase observes a dynamic behaviour
change and produces an adaptation change. It fulfils the relations
conforms to and fulfils. In the figure, the content of the plan phase
is exemplified via two inner functions, function A and function B,
producing an intermediate adaptation.

The reader should note that this notation is not intended as
complete modelling notation, despite its formal grounding. E.g., it
lacks clear execution semantics, like the relation between nested
elements. For the purpose of this paper this is sufficient since we
use it to illustrate the difference between hybrid policy types. To
be usable as framework the respective execution semantics need
to be provided, e.g., by a mapping into EUREMA [21] or process-
based notations such as BPMN [13]. In this paper, we take certain
liberties with the notation. For reasons of readability we will use
textual descriptions in quotation marks to abbreviate relations
whose formal definition is too unwieldy.

5.2 Integrated Combination
An integrated hybrid adaptation policy combines multiple

policies targeting the same adaptive system and adaptation
problem with an integrated plan phase.

An example is the classical interpretation of the utility-based
policy, depicted in Fig. 6. In this policy the goal-based policy is
combined with a utility function. This utility function is added to
the evaluation model. Accordingly, the combined evaluation
model consists of a tuple of evaluation models, one from each
policy. The relation fulfils is also extended to check whether the
adaptation fulfils the goal and optimizes the utility function.
Formally, this means, the relation is an intersection of the
relations fulfils of both policies. In the plan phase function
�8*
"
9�:;
�:7!
�') (which is able to plan action application
with a utility function) is used to derive the required adaptation.

Figure 6: Illustration of an integrated hybrid policy.

In our modelling notation an integrated combination can be
recognized by the fact that the adaptation problem, plan phase and
adaptive system are fully merged. This means, there is a single
integrated plan phase targeting one adaptive system and an
integrated adaptation problem. The integration of adaptation
problems can be based on the evaluation model, change model or
both as well as the respective relations. The plan phase in this
policy is integrated, meaning it is not a composition of the
separate plan phases of the respective policies but is implemented
in terms of its own functions. In the example, neither the pure
goal-based nor the utility-based policy contains a function
�8*
"
9�:;
�:7!
�') that is able to optimize a utility function
via application of actions.

5.3 Coordinated Combination
A coordinated hybrid adaptation policy combines multiple

adaptation approaches in one MAPE-K loop but keeps their plan
phases separate. This can be modelled as an outer plan phase in
which the plan phases of the combined policies are called.

Fig. 7 gives an example in which two plan phases, <-7'� and
<-7'�, are nested within one outer plan phase. Each inner plan
phase is called with the original adaptation problem and the
dynamic behaviour change. Each plan phase produces a separate
result (=�)� and =�)�). A function select selects the result that
best fulfils the utility function.

Like the integrated combination, the coordinated combination
contains one adaptive system and adaptation problem. The plan

82

SEAMS '18, May 28–29, 2018, Gothenburg, Sweden F. Trollmann et al.

phase, however, can be subdivided into the original plan phases
from the combined policies. As illustrated by select, the outer plan
phase may contain additional functions, e.g., to split up the
adaptation problem into subproblems or to combine the result.
The example in Fig. 7 represents an ensemble in which multiple
policies are executed and the best one is selected. Other
combinations could aim to find the intersection of two sub-
problems or to find an adaptation that contains both results.

Figure 7: Illustration of a coordinated hybrid policy.

5.4 Concurrent Combination
In a concurrent hybrid policy the combined policies solve

different adaptation problems, in different MAPE-K loops, but
target the same adaptive system directly or indirectly.

This is illustrated in Fig. 8. In the direct case (a), two plan
phases target the same adaptive system. This means, they operate
on the same category, representing the adaptive system. However,
the distinction between dynamic behaviour and adaptation may be
different. E.g., the adaptation caused by one plan phase may be
considered dynamic behaviour by the other plan phase.

In the indirect case (b) the adaptive system of both plan phases
is part of a common overall adaptive system. This means, there is
an adaptive system that encompasses both adaptive systems ��
and �� . Even though both adaptations target different adaptive
system they may still influence each other.

In our model the concurrent case is signified by separate plan
phases that adapt the same adaptive system, either by having this
system as target of the two plan phases directly or by indirectly
targeting two (possibly overlapping) subsystems.

Figure 8: Illustration of a concurrent hybrid policy.

5.5 Hierarchical Combination
In a hierarchical combination of adaptation policies the

adaptive system of one policy is part of the information used in
the other policy. This means, the purpose of the second policy is
not to adapt the same adaptive system but to change the way in
which the first policy adapts the adaptive system.

This is illustrated in Fig. 9. Plan phase <-7'� targets an
adaptive system � that contains the adaptation problem of <-7'�.
The purpose of this combination is to assure or optimize
properties of the adaptation mechanism itself, like its calculation
time or result quality. For this purpose the category ��used by
<-7'� will often use additional information about the behaviour
of <-7'� that can be monitored and used as basis for decisions.

Figure 9: Illustration of a hierarchical hybrid policy.

83

Hybrid Adaptation Policies SEAMS '18, May 28–29, 2018, Gothenburg, Sweden

In our model the hierarchical combination is represented by
two separate plan phases, one of which targets information used in
the other one. This information may not always be the adaptation
problem. It may be only part of the adaptation problem (e.g., only
the evaluation or change model) or other information used in
<-7'�> For example, if <-7'� contains an optimization approach,
such as simulated annealing, the second policy could tweak
parameters such as acceptance probability.

5.6 Discussion
In this section we present a classification of four types of

combination for adaptation policies and a model that can be used
to represent how these combinations are implemented. If two
policies are combined with a single plan phase (i.e., in a single
MAPE-K loop) they can be integrated or coordinated, based on
whether the plan phases from both policies can still be
distinguished. In the case of multiple plan phases they can be
concurrent, if their adaptive systems coincide or are parts of the
same overall system, or hierarchical, if the adaptive system of one
is part of the plan phase or adaptation problem of the other. If
neither case applies we say the policies are unrelated.

Since the concurrent and hierarchical case concern multiple
MAPE-K loops similar concepts can be found in frameworks that
model the interaction of MAPE-K loops. In EUREMA [21] the
concurrent combination is called independent or coordinated
execution of feedback loops while the hierarchical combination is
called layered execution of feedback loops.

The classification presented in this section is limited to the
combination of two policies. However, the complexity of realistic
approaches often requires the combination of more than two
policies or a combination in more than one type. Since the
combined policies do not need to be pure policies the four types of
combination can be applied multiple times, thus nesting these
combinations. For example, two policies could be integrated with
each other and the resulting policy could be optimized via a third
policy in hierarchical combination.

The classification could also be extended to more detailed
subcategories. For integrated and coordinated combination,
subcategories could be based on different combinations of
adaptation problems or different implementations of the plan
phase. The type of combined policy could also be taken into
consideration. This could reveal whether there are special types of
combination based on which policies are combined or which
information is contained in the combined policies.

6 APPLICATION
In this section, we apply our model to DeltaIOT and L-DSPL

to illustrate how these approaches are modelled and explain the
differences we observed in Section 3. These frameworks are
examples of integrated and hierarchical combination. After
discussing them we give examples of the other two combinations.

DeltaIOT is a mix of a utility-based and goal-based policy.
The main adaptation mechanism is goal-based, but uses utility
functions as side goals. Since the adaptation problem is solved in

one plan phase this is an example of an integrated adaptation
policy. The model of DeltaIOT is given in Fig. 10.

Figure 10: Model of DeltaIOT

The adaptive system representation of DeltaIOT consists of
network parameters for each connection and information about the
network state.

The change model prescribes intervals for transmission power,
spreading factor and distribution factor. A network configuration
conforms to this change model if the factors of each connection
are within those intervals and if the sum of distribution factors for
all connections from one node is 100 (Iftikhar et al. state that the
sum is usually 100 [10]). The evaluation model contains Boolean
goals (maintain connectivity and reduce package loss) and utility
functions (minimise energy consumption, minimise package loss
and balance energy consumption). The Boolean goals are required
by relation fulfils. In addition, this relation requires the utility
functions to be improved if possible. This is a reflection of the
fact that the approach optimizes these functions gradually.

The adaptation mechanism in DeltaIOT changes the network
parameters gradually. It does so by improving the utility functions
step-wise until no more improvement can be made.

L-DSPL is a combination of a rule-based adaptation policy
(DSPL) and goal-based adaptation policy (learning). Both have
separate planning phases and learning optimizes the rules, which
are part of the DSPL approach. This is a hierarchical combination
of those policies. The model of L-DSPL is given in Fig. 11.

The lower part of the figure represents the DSPL approach.
The category representing the adaptive system contains an
instance of the feature model, which represents the current state of
the software system, and a context model, which represents the
state of the monitored context information. The adaptation
problem contains a set of adaptation rules (change model). In the
DSPL exactly one rule is applied at the same time (conforms to).
As usual in rule-based approaches there is no explicit notion of
goal as the goal is encoded in the rules. Thus, the evaluation
model is empty and always fulfilled. The plan phase selects a rule
and then switches the running system to adhere to this rule.

84

SEAMS '18, May 28–29, 2018, Gothenburg, Sweden F. Trollmann et al.

Figure 11: Model of L-DSPL

The upper part of the figure represents the learning component.
The adaptive system of this plan phase contains the change model
of the DSPL part. It also contains information about the
adaptation history, i.e., in which context states the rules have
worked and failed. The adaptation problem is goal-based. The
change model contains actions to change, add or remove rules
from the DSPL change model. A feature model conforms to this
change model if all rules adhere to the feature model and have
mutually exclusive conditions. The evaluation model contains a
Boolean requirement, that needs to be preserved (fulfils).

Using these models we are able to identify the difference in
combining policies described in the end of Section 3. While both
examples combine two adaptation policies, they do so using
different types of combination. DeltaIOT uses an integrated
combination in which the adaptation problem uses information
from both policies. L-DSPL uses a hierarchical combination in
which one policy adapts the other one.

Examples for the other two types of combination can also be
found. The hybrid planning approach by Pandey et al. is an
example for a coordinated combination [14]. This approach
solves an integrated planning problem (goal-based problem with
utility function) by using multiple planning algorithms and
selecting among the results based on time- and quality constraints.

An example for a concurrent approach is the self-adaptation
approach by Vogel and Giese [19] in which a model of an

adaptive system is synchronized with multiple views on that
model which reflect only the information relevant to a specific
aspect (e.g., component failure or performance). Each partial
model has its own adaptation mechanism.

7 DISCUSSION AND FUTURE WORK
In this paper we classify four ways to combine adaptation

policies into hybrid policies: integrated, concurrent, coordinated
and hierarchical. The classification is done based on which
adaptive system they target, whether they solve the same
adaptation problem and whether their plan phases are integrated.
To represent these combinations we use a reference model,
representing the implementation of an adaptation policy in terms
of functions, models and relations. The reference model uses
category theory as formal foundation to represent the state space
of an adaptive system.

The classification and the reference model can be used to
structure the development of self-adaptive systems and compare
different approaches based on how their adaptation mechanism is
implemented. While the classification is still fairly course, the
accompanying model enables to represent the implementation and
combination of approaches in more detail and can be used for
more fine-grained discussion and comparison of approaches.

The model and classification are the result of our state of the
art analysis on SEAMS 2016 and 2017. While we believe the
resulting sample set of approaches to be representative, it may be
the case that the classification needs extension in future work to
capture cases that haven’t been encountered yet.

To evaluate completeness and extend our classification and
model we aim to extend the structured literature analysis and
model each identified approach with our model. As a result of this
activity we can further refine classification and model by
considering repeated patterns in the resulting models.

The model provided in this paper is an early version of a
modelling language that aims to model plan phases to classify and
compare them. Since we expect further extensions due to the
above mentioned refinement activities, we left the model on an
abstract level, avoiding a completely specified abstract syntax. In
future work we intend to complete and provide this model to the
community. The implementation will likely be a mapping to or
extension of existing modelling languages. Candidates that have
been considered and excluded for this paper where FORMS [24],
which provides more of an architectural view than the input-
output-based process view in our model, and EUREMA [21],
which is not able to represent relations. It is likely that the final
implementation will constitute an extension of or mapping to such
a modelling language.

REFERENCES
[1] Balasubramanian, S., Desmarais, R., Müller, H. A., Stege, U., Venkatesh, S.:

Characterizing problems for realizing policies in self-adaptive and self-
managing systems. In: Proceedings of the 6th international Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS2011), 70–79. ACM Press (2011)

[2] Baldan, P., Corradini, A., Heindel, T., König, B., Sobocinski, P.: Unfolding
grammars in adhesive categories. In: Algebra and Coalgebra in Computer
Science, Volume 5728 of Lecture Notes in Computer Science, 350–366.

85

Hybrid Adaptation Policies SEAMS '18, May 28–29, 2018, Gothenburg, Sweden

Springer-Verlag (2009)
[3] Born, K., Lambers, L., Strüber, D, Taentzer, G.: Granularity of Conflicts and

Dependencies in Graph Transformation Systems. In: Proceedings of the 10th
International Conference on Graph Transformation (ICGT2017), 125–141.
Springer-Verlag (2017)

[4] Ehrig, H., Golas, U., Hermann, F.: Categorical Frameworks for Graph
Transformation and HLR Systems based on the DPO Approach. Bulletin of the
European Association for Theoretical Computer Science 102, 111–121. (2010)

[5] IBM: Autonomic computing - the 8 elements (2001),
http://researchweb.watson.ibm.com/autonomic/overview/elements.html

[6] Herrlich, H., Strecker, G.: Category theory: an introduction. Allyn and Bacon
series in advanced mathematics. Allyn and Bacon (1973)

[7] Hinchey, M., Park, S., Schmid, K.: Building dynamic software product lines.
In: IEEE Computer, 45(10):22–26. IEEE Computer Society (2012)

[8] Hussein, M., Han, J., Colman, A.: Specifying and verifying the context-aware
adaptive behaviour of software systems. Tech. Rep. C3-516-03, Swinburne
University of Technology, Faculty of Information and Communication
Technologies (FICT) (December 2010)

[9] Hussein, M., Han, J., Colman, A.: Context-aware adaptive software systems: A
system-context relationships oriented survey. Tech. Rep. C3-516-01,
Swinburne University of Technology, Faculty of Information and
Communication Technologies (FICT) (2010)

[10] Iftikhar, M. U., Ramachandrany, G. S., Bollansée, P., Weyns, D., Hughes, D.:
DeltaIoT: A Self-Adaptive Internet of Things Exemplar. In: Proceedings of the
12th international Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS2017), 76–82. IEEE Press (2017)

[11] Kephart, J. O., Chess, D. M.: The vision of autonomic computing. In: IEEE
Computer 36(1), 41–50, IEEE Computer Society (2003)

[12] Kephart, J. O., Walsh, W. E.: An articial intelligence perspective on autonomic
computing policies. In: POLICY. 3–12. IEEE Computer Society (2004)

[13] Object Management Group: Business Process Model and Notation (BPMN),
Version 2.0, (Technical report, Object Management Group)

[14] Pandey, A., Ruchkin, I., Schmerl, B., Cámara, J.: Towards a Formal
Framework for Hybrid Planning in Self-Adaptation. In: Proceedings of the 12th
international Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS2017), 109–115. IEEE Press (2017)

[15] Russel S., Norvig P.: Artificial Intelligence: A Modern Approach, 2nd Edition,
Prentice Hall (2002)

[16] Sharifloo, M. A., Metzger, A., Quinton, C., Baresi, L., Pohl, K.: Learning and
evolution in dynamic software product lines. In: Proceedings of the 11th
international Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS2016), 156–164. IEEE Press (2016)

[17] Trollmann, F., Albayrak, S.: Extending Model to Model Transformation
Results from Triple Graph Grammars to Multiple Models. In: Proceedings of
the 8th International Conference on Model Transformation (ICMT2015), 214–
229. (2015)

[18] Villegas, N. M., Tamura, G., Müller, H. A., Duchien, L., Casallas, R.:
DYNAMICO: A Reference Model for Governing Control Objectives and
Context Relevance in Self-Adaptive Software Systems. In: Software
Engineering for Self-Adaptive Systems II, Lecture Notes in Computer Science,
vol. 7475, 265–293. Springer-Verlag (2013)

[19] Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In:
Proceedings of the Workshop on Software Engineering for Adaptive and Self-
Managing Systems, 39–48. ACM Press (2010),

[20] Vogel T., Seibel, A., Giese, H.: The Role of Models and Megamodels at
Runtime. In: Models in Software Engineering. MODELS 2010. Lecture Notes
in Computer Science, vol. 6627, 224–238. Springer (2011),

[21] Vogel, T., Giese, H.: Model-Driven Engineering of Self-Adaptive Software
with EUREMA. ACM Transactions on Autonomous Adaptive Systems 8(4),
18:1-18:33 (Jan 2014)

[22] Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops
in self-adaptive systems. In: Proceedings of the 6th international Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS2011), 202–207. ACM Press (2011)

[23] Weyns, D., Malek, S., Andersson, J.: On decentralized self-adaptation: Lessons
from the trenches and challenges for the future. In: Proceedings of the
Workshop on Software Engineering for Adaptive and Self-Managing Systems.
84–93. ACM Press (2010)

[24] Weyns, D., Malek, S., Andersson, J.: Forms: Unifying reference model for
formal specification of distributed self-adaptive systems. ACM Transactions on
Autonomous Adaptive Systems 7(1), 8:1–8:61, ACM (May 2012)

[25] Zhang, J., Cheng, B. H. C., Goldsby, H.: Amoeba-rt: Run-time verification of
adaptive software. In: Models in Software Engineering, Workshops and
Symposia at MoDELS 2007, Reports and Revised Selected Papers. Lecture
Notes in Computer Science, vol. 5002 212–224. Springer-Verlag (2007)

86

