
Predictability in Human-Agent Cooperation: Adapting to
Humans’ Personalities

Sebastian Ahrndt
DAI-Laboratory

Technische Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
ahrndt@dai-labor.de

Benjamin Breitung
DAI-Laboratory

Technische Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
breitung@dai-labor.de

Johannes Fähndrich
DAI-Laboratory

Technische Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
faehndrich@dai-labor.de

Sahin Albayrak
DAI-Laboratory

Technische Universität Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany
albayrak@dai-labor.de

ABSTRACT
Making artificial agents a constituent part of human activ-
ities leads to more affiliated teamwork scenarios and at the
same time introduces several new challenges. One challenge
is the team members’ ability to be mutually predictable,
which is required to effectively plan own actions, e.g., in the
field of human-aware planning. This work approaches the
question whether or not agents are able to learn the per-
sonality of a human during interaction. In particular, we
developed an agent model able to learn human personality
during repeatedly played rounds in the Colored Trails Game.
Human personality is described using a psychological theory
of personality types known as the Five-Factor Model. The
results indicate that some characteristics of a personality
can be learned more accurately/easily than others.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning; J.4 [Computer
Applications]: Social and Behavioural Sciences

Keywords
Information systems, User/Machine systems, Human fac-
tors, Software psychology

1. INTRODUCTION
Human-human teamwork has already been studied decades-
long and several properties distinguishing good and effective
from flawy teamwork were identified [18]. One of them is
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the characteristic of team members to be (mutually) pre-
dictable to each other [5]. In human-agent teamwork, pre-
dictability addresses the circumstance that an agent can only
plan its own actions effectively—which includes coordination
activities—when it is assessable what the others, including
the human, will do [4, 13]. To address this challenge a combi-
nation of theory- and data-driven approaches was postulated
as being beneficial (cf. [17]). In particular, the use of hu-
man behavioural models providing insights into the human
nature from the psychological point of view is desired [3, 12].
These models form the theoretical basis for predicting hu-
man behaviour and can provide information about the per-
sonality, habits and capabilities of humans, e.g. in terms of
hand-coded rules. Although these models are a good start-
ing point, they must be adapted to the human’s individual
preferences during the actual interaction [12]. Hence, the
motivation for this work is to proof that agents are able
to learn the personality of a human during interaction. In
order to do so, we applied a scientific game as a testbed
and a human personality model derived from psychology
as the theoretical vehicle. The findings indicate that some
characteristics of a personality can be learned more accu-
rately/easily than others, and that this information can be
used within the interaction with humans to predict their
next actions more accurately.

In the following we will introduce the scientific game we
used within this work (see Section 2) and the psychological
theory that was applied (see Section 3). Subsequently, the
topic of this work will be compared to the previous state-
of-the-art (see Section 4). Afterwards, we will introduce
the agent model used (see Section 5) and the experimental
results (see Section 6). Finally, we will wrap up the work
providing final remarks (see Section 7).

2. THE COLORED TRAILS GAME
The Colored Trails Game [8] (CT) is a multi-agent testbed to
investigate cooperative decision making within a chess-like
setting. The basic settings of the game are the following:
The board is a N ×M grid consisting of coloured squares
with a predefined set of available colours. Each player has



Figure 1: A sample screenshot of the game environ-
ment, showing the different phases (without move-
ment), the current board and the available chips for
each player.

a specific starting position and an amount of coloured chips
that can be used to move to a square of the same colour. The
main goal for each player is to reach the ‘goal square’. An
arbitrary amount of chips can be exchanged with (or given
to) other contestants in a communication phase arranged for
this purpose, consisting of a proposal, a decision, and the ac-
tual exchange. Proposed offers can be accepted or refused,
but it is not required to give the amount of promised chips.
A lot of definitions, e.g. whether or not the goal square is
identical for everyone or if the other players’ chips can be
seen are left open and can be alternated to meet each re-
searcher’s expectations. While some rules of the game —
like the size of the board — are less important than others,
especially the distribution of chips as well as the scoring eval-
uation are essential when examining the players’ behaviour.

The limited availability of the resources force cooperation
if not all of the players have the possibility of reaching the
goal on their own or if some can while others need assistance.
Nevertheless, the highest significance lies in the calculation
of the game’s final score. Commonly, points for reaching the
goal will be granted but everything else can be defined to
provoke or decrease cooperation.

Fig. 1 shows a screenshot of the game environment. The
‘phases display’ indicates the current phase of the game.
The thinking phase has been inserted for human players to
get an overview of the situation. The communication phase
can be used by the players to create a proposal in an addi-
tional window. In the exchange phase the players transfer
some amount of chips, which might be related to the priorly
accepted proposal.

3. FIVE-FACTOR MODEL
The Five-Factor Model of personality [14, 15] (FFM) is a
psychological theory that can be used to model human per-
sonality types and their influences on the decision-making
process of humans. As suggested by the name, the FFM in-
troduces five dimensions characterising an individual, which
are briefly described in the following:

• Openness to experience describes a person’s preference
to vary their activities over keeping a strict routine
and is also related to their creativity (e.g., inventive,
emotional and curious behaviour vs. consistent, con-
servative and cautious behaviour).

• Conscientiousness describes a person’s preference to
act duteously over spontaneously. This directly relates
to the level of self-discipline when aiming for achieve-
ments (e.g., efficient, planned and organised behaviour
vs. easy-going, spontaneous and careless behaviour).

• Extraversion describes a person’s preference to inter-
act with other people and to gain energy from this
interaction over being more independent of social in-
teraction (e.g., outgoing, action-oriented and energetic
behaviour vs. solitary, inward and reserved behaviour).

• Agreeableness describes a person’s preference to trust
others, to act helpful and to be optimistic over an an-
tagonistic and sceptical mindset. This trait directly
influences the quality of relationships with other indi-
viduals (e.g., friendly, cooperative and compassionate
behaviour vs. analytical, antagonistic and detached
behaviour).

• Neuroticism describes a person’s preference to inter-
pret external stimuli such as stress as minatory over
confidence and emotional stability. Neuroticism ad-
dresses the level of emotional reaction to events (e.g.,
sensitive, pessimistic and nervous behaviour vs. se-
cure, emotionally stable and confident behaviour).

The characteristic of each dimension is defined as a vari-
ation from the norm, whereas each dimension is an overar-
ching container subsuming different lower-level personality
traits. For example, neuroticism is associated with subordi-
nated traits such as anxiety, hostility and impulsiveness [15].
Taking this observation into account, one can argue that the
FFM theory is a conceptual framework about human person-
ality traits that can, for example, be used to integrate other
theories about human personalities into its structure [10, 16].
The reason for using the FFM of personality instead of other
popular personality theories can be found elsewhere [1].

4. RELATED WORK
Among others, predictability requires deliberating about the
other agents’ actions. In particular it requires to deliberate
what the next actions are that the team members will ex-
ecute in order to approach the joint goal of the collabora-
tion. In human-agent interaction predictability can be found
in works reaching from the question whether people reason
about other people’s actions [6] to questions of how to recog-
nise inter-player relationships in multi-player games [21].
The learning of social preferences to enhance predictabil-
ity is another topic. Here, L. Hoog and N. Jennings [9]



present a work where agents use a weighted sum of the other
agents’ expected outcomes as a utility function. The ex-
amined behaviour is called socially rational decision-making
and is based on the idea of social welfare functions. A com-
parable work is presented by Gal et al. [7] introducing social
preferences in terms of the three dimensions self-interest, so-
cial welfare and inequity aversion. Agents build knowledge
in these dimensions about the other agents and integrate
this knowledge into their own decision-making process. A
detached approach is presented by Bradshaw et al. [4] using
hand-crafted policies to adjust the decision-making of agents
to the respective use-case.

Talman et al. [20] present a work that illustrates the use
of a rather simple abstraction of personality types. Person-
alities of agents are determined through the two dimensions
cooperation and reliability. The agents play the CT game
and try to optimise a utility function incorporating whether
the player reaches the goal, the distance to the goal and
the number of chips left. During repeatedly played games
the agents reason about each other’s helpfulness along the
two dimensions. As an effect they try to respond more ef-
fectively by customizing their behaviour appropriately for
different personalities. For example, an agent tries to avoid
collaboration with another agent recognised as selfish, mean-
ing that the other agent is neither cooperative nor reliable.
Otherwise, the selfish agent would always win the game at
the others’ expense. The extensive evaluation carves out
that the agent that adapts its own behaviour with regard to
the personalities of the opponents outperforms agents who
do not adapt. Furthermore this adaptation leads to an in-
creased social welfare for the group in the long term.

This paper differs from the ones presented above in that
we apply an existing psychological theory of human person-
ality and evaluate our agent model using games played with
humans and artificial agents. In addition it is not our goal
to produce optimal group behaviour but to prove that we
can learn and use information about the personality of the
human. It is comparable to the mentioned works as it also
applies a multi-attributed utility function for the decision-
making process. In fact, it is motivated by the work of
Talman et al. and transfers their ideas from agent-agent to
human-agent cooperation.

5. APPROACH
In the following we will construct the agent model. It is
restricted to three of the five dimensions (conscientiousness,
extraversion, agreeableness) of the FFM. That is because the
action space of CT makes it difficult to associate all actions
with the traits of the FFM. Still, the agent model is general
enough to vary the game’s complexity by means of the grid
size, the number of players and the visibility parameters.
Our approach is based on the idea to link the personality
traits to the available actions by interpreting the meaning
of the trait, taking into consideration the effect of the action.
For the remaining traits (openness, neuroticism) this is hard
to accomplish, as there is no possibility to reward creative
or punish conservative behaviour. Furthermore, as CT is
a scientific game it is not constructed to evoke emotional
reaction in its players.1

1One might argue that repeatedly losing in the game leads to
an emotional reaction. But this effect is an ordinary one and
solely considered no indication for the emotional stability.

To build an estimate of the personality of the human an
agent i refers to a human k using the tuple Pk = {pkc , pke , pka},
where each p ∈ P represents a personality trait. As the
traits in the FFM are declared as variation from the norm,
the range of each p is [0, 1] and the initial value is set to 0.5.
This set is one of the features used by the agent to build the
expected utility of taking action a while playing against a
human.

To improve the estimates of the personality the agent
adapts each p during the interaction in the following way:

• pc — denotes the estimate of the conscientiousness of
the human and is interpreted as how reliable a player
is. Therefore fulfilling a trade increases and not ful-
filling it decreases this value. As failing to predict the
reliability of a player can lead to significant score losses
for the agent, this trait is of utmost importance. To
update the estimate after each trading agreement, we
compute the conscientiousness of a human by increas-
ing/decreasing it with a constant factor xc using the
following equation:

pc ←


pc + xc if successful exchange

pc − xc if successful exchange but fraud

pc − 2 · xc if fraud

.

The first case applies when the proposed set of chips
is equal to the one received. The second case applies
when the set of proposed and received chips is not
equal, but in the set of received chips exist some chips
that are useful for the agent. The last case applies if
the agent was fooled. This is the case when there is no
exchange or when the agent only receives useless chips.
Thus, bailing out an agreed trade is punished harder,
as it is a greater break of trust and might critically
damage the agent’s chance to reach the goal square.

• pe — denotes the estimate of the extraversion of the
human and is interpreted as how sociable the player
is. Therefore it is increased when the player makes a
proposal of exchanging chips, which is the most ex-
troverted action possible in the game. It is decreased
when the player acts passively by not proposing any-
thing. To update the estimate after each round, we
compute the extraversion of a human by increasing or
decreasing it with a constant factor xe using the fol-
lowing equation:

pe ←

{
pe + xe if proposed

pe − n · xe otherwise
.

The first case applies when the player offers a proposal,
the second case otherwise. The multiplicator n is grow-
ing until the player offers something and corresponds
to the number of rounds played:

n←

{
0 if proposed

n+ 1 otherwise
.



• pa — denotes the estimate of the agreeableness of the
human and is interpreted as how friendly/altruistic a
player is. Therefore it is increased when the player
accepts and decreased when the player declines of-
fers. It is increased/decreased twice when the offers are
favourable for the opponent. To update the estimate
after each active communication phase, we compute
the agreeableness of a human by increasing/decreasing
it with a constant factor xa using the following equa-
tion:

pa ←


pa + 2 · xa if accepted and altruistic

pa + xa if accepted

pa − xa if not accepted

pa − 2 · xa if not accepted but favorable

.

This equation rewards generous offers and exchanges
as they might be harmful to the players own score. At
the same time it reduces the agreeableness estimate
when the exchange of important chips was declined.
Thus the level of agreeableness is a kind of measure of
the selfishness of the player.

The constants xc, xe and xa were adjusted and determined
in test games played prior to the experiment. For reasons
of readability we omitted the edge cases when the estimates
reach the minimal/maximal value of the interval. In these
cases a positive/negative adjustment was no longer applied.

We use the estimates pe and pa to calculate the expecta-
tion that a proposal will be accepted, as the weighted sum
eacc = pe · we + pa · wa. The weights are used to adjust the
influence of the traits. A second value indicates the expec-
tation whether an agreed exchange indeed takes place and
is represented as eexc = pc.

The second feature to build the expected utility is the
score that is reachable with the current set of coloured chips
(rc), the score that is reachable after a successful trade (rt)
and the score that is reachable falling for a betrayal (rf ).
Here betrayal means accepting a trade and transferring own
chips without getting the promised response. All three can
be easily calculated when knowing (1) that CT controls the
movement phase by applying the A* algorithm to determine
the best option to move towards the goal square and (2)
the scoring function of the game, which sums the following
parameters:

• 100 starting points;

• 50 points for reaching the goal square and ending the
round as winner;

• 10 additional points for all coloured chips left;

• 10 penalty points for each proposal made by the player;
and

• 20 penalty points for each tile between the final posi-
tion and the goal square calculated using the Manhat-
tan distance.

Both features are then used to calculate the expected value
(reward) of executing action a given the current state of the
game s using the following multi-attribute utility function
when making a proposal:

ui
a(s, Pk) = eacc · eexc · rt + (1− eacc) · rc+

eacc · (1− eexc) · rf

When the agent receives a proposal the likelihood that it
will be accepted is not of relevance since the agent can choose
its answer and only has to consider that the exchange truly
takes place. Therefore we remove eacc when building the
utility for an action in this case.

Given this function the estimate of the personality of the
human influences the policy of the agent, which tries to max-
imise the utility. That means that for each agent i playing
against a human k an optimal action a∗k exists, that max-
imise the utility in state s where a∗k ∈ argmax

a
ui(s, Pk),

which is executed. If equally valued actions exist, the one
is selected that was found first. Indeed, in the implementa-
tion the agent has no knowledge that there exists more than
one action that maximise the utility. A more elaborate be-
haviour here would be to evaluate whether a chain of actions
would lead to a higher score, leading to an agent that acts
‘farsighted’ instead of ‘myopic’.

6. EXPERIMENT AND RESULTS
For the experiment we implemented the introduced agent
model for the CT environment and invited 22 participants,
which were mainly students. At the beginning, the par-
ticipants were asked to describe their personality using a
questionnaire derived from the IPIP2. Afterwards, the game
environment was explained and each participant got a 10
minutes tutorial on how to play the game. Here we explained
the rules and the scoring function, and actually played the
game with the subjects. The scoring function consisted of
reaching the goal, the distance to the goal and the chips
left as described earlier. In the initial stage the participants
played against an agent that did not adapt to the opponent.
Afterwards the attendees played 30 games in a row against
the adapting agent. The goal of the participants was to
reach the maximum score in as many games as possible.

Table 1 lists the data collected within the experiment.
The scoring results listed in columns 2 and 3 show the mean
value of the points of all 30 games determined for each hu-
man player and the agent playing against the participant.
It shows that the agent outperforms the human players on
average, even though the difference is fairly small. We tried
to minimise random effects by setting up the CT environ-
ment in a way that the same number of chips was given to
the opponents and the central field was chosen as the goal
square. Taking that and the total number of 660 games
played into consideration, the scoring difference can be seen
as significant.

However, that only shows that an agent adapting to its
opponent can compete with the human player and illus-
trates one use-case for applying information about personal-
ity to human-agent cooperation. Table 1 also lists the devi-
ation between the agents’ estimates of the personality traits
(columns 3 to 5) of their opponents and the actual personal-
ity assessment derived from the questionnaire including the

2IPIP — International Personality Item Pool: A Scientific
Collaboratory for the Development of Advanced Measures
of Personality and Other Individual Differences — http:
//ipip.ori.org/. For the experiment the 100-Item Set of
IPIP Big-Five Factor Markers was used.



Table 1: Listing of the average scores reached by
the opponents (human and agent) within the games
and the average score and deviation over all games.
Also includes a listing of the deviation between the
agent’s estimate of the humans personality trait and
the one derived from the questionnaire.

# Human Agent Extra. Agree. Consc.

1 111 99 0.18 0.225 0.265
2 107 154 0.09 0.09 0.12
3 98 113 0.02 0.28 0.245
4 121 127 0.075 0.025 0.215
5 118 140 0.035 0.06 0.4
6 105 113 0.05 0.19 0.175
7 132 134 0.03 0.235 0.09
8 100 107 0.14 0.335 0.24
9 88 154 0.015 0.05 0.425
10 142 102 0.045 0.225 0.11
11 104 106 0.055 0.195 0.075
12 105 112 0.07 0.295 0.37
13 99 144 0.06 0.17 0.425
14 121 120 0.065 0.19 0.12
15 126 111 0.16 0.095 0.215
16 145 137 0.04 0.05 0.22
17 86 141 0.025 0.215 0.065
18 102 107 0.015 0.06 0.13
19 138 132 0.145 0.075 0.47
20 154 110 0.05 0.21 0.275
21 101 124 0.02 0.165 0.215
22 97 138 0.125 0.285 0.23

µ 113.64 123.86 0.07 0.17 0.23
σ 15.84 14.77 0.04 0.08 0.09

average deviation. It shows that the smallest variation is
found for the extraversion parameter, while agreeableness
and conscientiousness are drifting further apart (Fig. 2 de-
picts the spreading of the values in a boxplot). A value of
zero would mean that both characterisations are perfectly
equivalent, which is only a theoretical option that also can
not be observed when assessing an individual using self-
assessment, a questionnaire and a professional assessment.

Since the CT game has a very limited action space avail-
able to evaluate and analyse the behaviour of the other
player, it is difficult to associate these actions with factors of
the FFM. Thus, the environment/action-space might have
to be more complex. Another possible explanation for the
parameters not depicting the survey results might be that
our interpretation of how the traits influence the actions
taken does not precisely fit the humans’ behaviour. Since
the goal of the game is to reach the best possible score, it
might be beneficial to use a more generalised trait just in-
dicating how cooperative the human is (as done by Talman
et al. [20]). Despite these imaginable hindrances the out-
come is still considerably good, especially for the value of
extraversion.

7. CONCLUSION
In this work we presented an agent model that uses a rep-
resentation of a human’s personality to reason about the
outcome of cooperative actions in the Colored Trails Game.

Figure 2: Boxplot of deviation between question-
naire and agent’s estimate of the player’s personali-
ties.

The personality representation is based on the Five-Factor
Model of human personality. The agent is able to adapt its
estimates of the personality traits while observing the ac-
tions of the other player. The basic idea here was to link the
traits to the action space by interpreting the meaning of the
trait, taking into consideration the effect of the action. The
experimental results showed that the different personality
traits vary in the difficulty to be observed/learned. Never-
theless, the evaluation shows that this information can be
used within the interaction with humans to predict the next
actions of such humans more accurately. Even though it
was not the goal of the work to implement an agent able
to outperform the human players, the agent’s performance
was actually equal or even better than that of most human
players. Here further investigations must be made to gather
information why some of the human players outperformed
the agent even if it was able to build a model of them. As
this is only related to the game played, the overall findings
are interesting for fields such as human-agent negotiation
and human-agent cooperation. In fact, it is one of the re-
quirements postulated for joint human-agent activities (cf.
[4, 11, 12, 13]).

In future work, we want to integrate these findings into
HPLAN [2], an extension of the JIAC V agent-framework,
which facilitates the implementation of joint human-agent
activities. Here developers will be enabled to annotate agents’
actions and their influences on the personality trait. Using
such a development environment will enable us to conduct
further research and user studies in environments inhabited
by robots and humans. Furthermore, it is planned to re-
place the currently used approach of adapting the estimate
by replacing it with existing works from the reinforcement
learning (RL) community, such as Q-learning [19]. This can
be done, as predictability addresses the transition probabil-
ity of Markov Decision Processes (MDPs), which is in our
work influenced by the personality of the user. Here future



work includes a theoretical part about integrating the per-
sonality model as a preference vector that can be used to
learn in MDPs and a practical part evaluating whether or
not model-based RL can be used under this circumstances
and whether or not model-based RL is fast enough for direct
interaction with human users.
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